Skip to main content
Log in

The first observed cloud echoes and microphysical parameter retrievals by China’s 94-GHz cloud radar

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

By using the cloud echoes first successfully observed by China’s indigenous 94-GHz SKY cloud radar, the macrostructure and microphysical properties of drizzling stratocumulus clouds in Anhui Province on 8 June 2013 are analyzed, and the detection capability of this cloud radar is discussed. The results are as follows. (1) The cloud radar is able to observe the time-varying macroscopic and microphysical parameters of clouds, and it can reveal the microscopic structure and small-scale changes of clouds. (2) The velocity spectral width of cloud droplets is small, but the spectral width of the cloud containing both cloud droplets and drizzle is large. When the spectral width is more than 0.4 m s−1, the radar reflectivity factor is larger (over −10 dBZ). (3) The radar’s sensitivity is comparatively higher because the minimum radar reflectivity factor is about −35 dBZ in this experiment, which exceeds the threshold for detecting the linear depolarized ratio (LDR) of stratocumulus (commonly −11 to −14 dBZ; decreases with increasing turbulence). (4) After distinguishing of cloud droplets from drizzle, cloud liquid water content and particle effective radius are retrieved. The liquid water content of drizzle is lower than that of cloud droplets at the same radar reflectivity factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atlas, D., 1954: The estimation of cloud parameters by radar. J. Meteor., 11, 309–317.

    Article  Google Scholar 

  • Babb, D. M., and J. Verlinde, 2000: The retrieval of turbulent broadening in radar Doppler using linear inversion with double-sided constraint. J. Atmos. Oceanic Technol., 17, 1577–1583.

    Article  Google Scholar 

  • Baedi, R. J. P., J. J. M. de Wit, H. W. J. Russchenberg, et al., 2000: Estimating effective radius and liquid water content from radar and lidar based on the CLARE’98 dataset. Phys. Chem. Earth, 25, 1057–1062.

    Article  Google Scholar 

  • Clothiaux, E. E., K. P. Moran, B. E. Martner, et al., 1999: The atmospheric radiation measurement program cloud radars: Operational modes. J. Atmos. Oceanic Technol., 16, 819–827.

    Article  Google Scholar 

  • Cober, S. G., J. W. Strapp, and G. A. Isaac, 1996: An example of supercooled drizzle drops formed through a collision-coalescence process. J. Appl. Meteor., 35, 2250–2260.

    Article  Google Scholar 

  • Danne, O., M. Quante, D. Milferstädt, et al., 1999: Relationships between Doppler spectral moments within large-scale cirro- and altostratus cloud fields observed by a ground-based 95 GHz cloud radar. J. Appl. Meteor., 38, 175–189.

    Article  Google Scholar 

  • Fox, N. I., and A. J. Illingworth, 1997: The retrieval of stratocumulus cloud properties by ground based cloud radar. J. Appl. Meteor., 36, 485–492.

    Article  Google Scholar 

  • Frisch, A. S., C. W. Fairall, J. B. Snider, 1995: Measurement of stratus cloud and drizzle parameters in ASTEX with a Ka-band Doppler radar and a microwave radiometer. J. Atmos. Sci., 52, 2788–2799.

    Article  Google Scholar 

  • —, —, G. Feingold, et al., 1998: On cloud radar and microwave radiometer measurements of stratus cloud liquid water profiles. J. Geophys. Res., 103(D18), 23195–23197.

    Article  Google Scholar 

  • —, M. Shupe, I. Djalalova, et al., 2002: The retrieval of stratus cloud droplet effective radius with cloud radars. J. Atmos. Oceanic Technol., 19, 835–842.

    Article  Google Scholar 

  • Gossard, E. E., R. O. Strauch, and R. R. Rogers, 1990: Evolution of drop size distributions in liquid precipitation observed by ground-based Doppler radar. J. Atmos. Oceanic Technol., 7 (6), 815–828.

    Article  Google Scholar 

  • Hamazu, K., H. Hashiguchi, T. Wakayana, et al., 2003: A 35 GHz scanning Doppler radar for fog observations. J. Atmos. Oceanic Technol., 20, 972–986.

    Article  Google Scholar 

  • Hogan, R. J., A. J. Illingworth, and H. Sauvageot, 2000: Measuring crystal size in cirrus using 35 and 94 GHz radars. J. Atmos. Oceanic Technol., 17, 27–37.

    Article  Google Scholar 

  • Illingworth, A. J., R. J. Hogan, E. J. O’Connor, et al., 2007: Cloudnet-continuous evaluation of cloud pro-files in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88, 883–898.

    Article  Google Scholar 

  • Kollias, P., B. A. Albrecht, and F. Marks, 2002: Accurate observations of vertical air velocities and raindrops using a cloud radar. Bull. Amer. Meteor. Soc., 83, 1471–1483.

    Article  Google Scholar 

  • —, J. Rémillard, E. Luke, et al., 2011a: Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications. J. Geophys. Res., 116, D13201, doi: 10.1029/2010JD015237.

    Article  Google Scholar 

  • —, W. Szyrmer, J. Rémillard, et al., 2011b: Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution. J. Geophys. Res., 116, D13203, doi: 10.1029/2010JD015238.

    Article  Google Scholar 

  • Kropfli, R. A., S. Y. Matrosov, T. Uttal, et al., 1995: Cloud physics studies with 8-mm wavelength radar. Atmos. Res., 35, 299–313.

    Article  Google Scholar 

  • Krofli, R. A., and R. D. Kelly, 1996: Meteorological research applications of mm-wave radar. Meteor. Atmos. Phys., 59, 105–121.

    Article  Google Scholar 

  • Lhermitte, R. M., 2002: Centimeter & Millmeter Wavelength Radars in Meteorology. Lhermitte Publications, Miami, Florida, 389–546.

    Google Scholar 

  • Liou, K. N., 1986. Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 1167–1199.

    Article  Google Scholar 

  • O’Connor, E. J., A. J. Illingworth, and R. J. Hogan, 2004: Retrieving stratocumulus drizzle parameters using Doppler radar and lidar. J. Appl. Meteor., 44, 14–27.

    Article  Google Scholar 

  • Sassen, K., and L. Liao, 1996: Estimation of cloud content by W band radar. J. Appl. Meteor., 35, 932–938.

    Article  Google Scholar 

  • —, G. G. Mace, Z. Wang, et al., 1999: Continental stratus clouds: A case study using coordinated remote sensing and aircraft measurements. J. Atmos. Sci., 56, 2345–2358.

    Article  Google Scholar 

  • Sauvageot, H., and J. Omar, 1987: Radar reflectivity of cumulus clouds. J. Atmos. Oceanic Technol., 4, 246–272.

    Article  Google Scholar 

  • Shupe, M. D., P. Kollias, S. Y. Matrosov, et al., 2004: Deriving mixed-phase cloud properties from Doppler radar spectra. J. Atmos. Oceanic Technol., 21, 660–670.

    Article  Google Scholar 

  • —, —, M. Poellot, et al., 2008: On deriving vertical air motions from cloud radar Doppler spectra. J. Atmos. Oceanic Technol., 25, 547–557.

    Article  Google Scholar 

  • Sun Xiaoguang, 2011: Millimeter wave radar data processing and the cloud aviation meteorological guarantee applied research. Master dissertation, PLA University of Science and Technology, 1–5, 24–35.

    Google Scholar 

  • Zhong Lingzhi, Liu Liping, and Ge Runsheng, 2009: Characteristics about the millimeter-wavelength radar and its status and prospect in and abroad. Adv. Earth Sci., 24, 383–391.

    Google Scholar 

  • —, —, Chen Lin, et al., 2010: A potential application of a millimeter wavelength radar to studying the cloud physics mechanism for ice and snow weather. Acta Meteor. Sinica, 68, 705–716. (in Chinese)

    Google Scholar 

  • Zong Rong, 2013: Detection and research for macro and micro characteristics of cloud by millimeter-wave radar. Ph. D. dissertation, Dept. of Physics, Nanjing University of Information Science & Technology, China, 30–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Wei  (魏 鸣).

Additional information

Supported by China Meteorological Administration Special PublicWelfare Research Fund (GYHY201206038, GYHY200906053, and GYHY201306040), National (Key) Basic Research and Development (973) Program of China (2013CB430102), National High Technology Research and Development Program (863) of China (2007AA061901), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (10KJA170030), State Key Laboratory Program (2013LASW-B16), Nanjing Weather Radar Open Laboratory Research Fund (BJG201208), Key Technology Projects of China Meteorological Bureau (CMAGJ2014M21), Young Scientists Fund of the Natural Science Foundation of Jiangsu Province (BK2012466), Postgraduate Science and Technology Innovation Project of Jiangsu Province (CXZZ13-0513), Non-Profit Industry Fund by Ministry of Science and Technology of China and Ministry of Water Resources (201201063), and Young Scientists Fund of the National Natural Science Foundation of China (41305031).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Wei, M., Hang, X. et al. The first observed cloud echoes and microphysical parameter retrievals by China’s 94-GHz cloud radar. J Meteorol Res 28, 430–443 (2014). https://doi.org/10.1007/s13351-014-3083-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-014-3083-x

Key words

Navigation