Skip to main content
Log in

Dynamic impact of the vertical shear of gradient wind on the tropical cyclone boundary layer wind field

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

This work studies the impact of the vertical shear of gradient wind (VSGW) in the free atmosphere on the tropical cyclone boundary layer (TCBL). A new TCBL model is established, which relies on fiveforce balance including the pressure gradient force, Coriolis force, centrifugal force, turbulent friction, and inertial deviation force. This model is then employed to idealize tropical cyclones (TCs) produced by DeMaria’s model, under different VSGW conditions (non-VSGW, positive VSGW, negative VSGW, and VSGW increase/decrease along the radial direction). The results show that the free-atmosphere VSGW is particularly important to the intensity of TC. For negative VSGW, the total horizontal velocity in the TCBL is somewhat suppressed. However, with the maximum radial inflow displaced upward and outward, the radial velocity notably intensifies. Consequently, the convergence is enhanced throughout the TCBL, giving rise to a stronger vertical pumping at the TCBL top. In contrast, for positive VSGW, the radial inflow is significantly suppressed, even with divergent outflow in the middle-upper TCBL. For varying VSGW along the radial direction, the results indicate that the sign and value of VSGW is more important than its radial distribution, and the negative VSGW induces stronger convergence and Ekman pumping in the TCBL, which favors the formation and intensification of TC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes, R. A., 1971: Iterative solutions to the steadystate axisymmetric boundary-layer equations under an intense pressure gradient. Mon. Wea. Rev., 99, 261–268.

    Article  Google Scholar 

  • Bender, M. A., 1997: The effect of relative flow on the asymmetric structure in the interior of hurricanes. J. Atmos. Sci., 54, 703–724.

    Article  Google Scholar 

  • Black, M. L., J. F. Gamache, F. D. Marks, et al., 2002: Eastern Pacific hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 2291–2312.

    Article  Google Scholar 

  • Blumen, W., and R. S. Wu, 1983: Baroclinic instability and frontogenesis with Ekman boundary layer dynamics incorporating the geostrophic momentum approximation. J. Atmos. Sci., 40, 2630–2637.

    Article  Google Scholar 

  • Braun, S. A., and L. G. Wu, 2007: A numerical study of Hurricane Erin (2001). Part II: Shear and the organization of eyewall vertical motion. Mon. Wea. Rev., 135, 1179–1194.

    Article  Google Scholar 

  • Brown, R. A., 1974: Analytic Methods in Planetary Boundary Layer Modeling. Adam Hilger L TD, London, and Halstead Press, John Wiley and Sons, New York, 150 pp.

    Google Scholar 

  • Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 68–75.

    Article  Google Scholar 

  • Cheng, Yu-Hsin, Shih-Jen Huang, A. K. Liu, et al., 2012: Observation of typhoon eyes on the sea surface using multi-sensors. Remote Sens. Environ., 123, 434–442.

    Article  Google Scholar 

  • Chu Huiyun and Wu Rongsheng, 2013: Environmental influences on the intensity change of tropical cyclones in the western North Pacific. Acta Meteor. Sinica, 27(3), 335–343.

    Article  Google Scholar 

  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 2100–2123.

    Article  Google Scholar 

  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076–2088.

    Article  Google Scholar 

  • —, S. D. Aberson, K. V. Ooyama, et al., 1992: A nested spectral model for hurricane track forecasting. Mon. Wea. Rev., 120, 1628–1643.

    Article  Google Scholar 

  • Ekman, V. W., 1905: On the influence of the earth’s rotation on ocean currents. Arkiv. Mat. Astron. Fysik., 2(11), 1–53.

    Google Scholar 

  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclone. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–605.

    Google Scholar 

  • —, 2003: A Century of Scientific Progress and Evaluation. Hurricane! Coping with Disaster. Washington D. C., Amer. Geophy. Union, 177–204.

    Google Scholar 

  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 2044–2061.

    Article  Google Scholar 

  • —, and —, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249–2269.

    Article  Google Scholar 

  • Gallina, G. M., and C. S. Velden, 2002: Environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite derived wind information. Twenty-fifth Conference on Hurricanes and Tropical Meteorology, San Diego, CA, 29 April–3 May, Amer. Meteor. Soc., 172–173.

    Google Scholar 

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700.

    Article  Google Scholar 

  • Holland, G. J., and Y. Q. Wang, 1999: What limits tropical cyclone intensity? Preprint, 23rd Conference on Hurricanes and Tropical Meteorology, 10–15 January, Dallas, Texas, 955–958.

    Google Scholar 

  • Hoskins, B. J., 1975: The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmos. Sci., 32, 233–242.

    Article  Google Scholar 

  • —, and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 11–37.

    Article  Google Scholar 

  • MacAfee, A. W., and G. M. Pearson, 2006: Development and testing of tropical cyclone parametric wind models tailored for midlatitude application-preliminary results. J. Appl. Meteor. Climatol., 45, 1244–1260.

    Article  Google Scholar 

  • McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 1132–1151.

    Article  Google Scholar 

  • Merrill, R. T., 1988: Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 1678–1687.

    Article  Google Scholar 

  • Panchev, S., and T. S. Spassova, 1987: A barotropic model of the Ekman planetary boundary layer based on the geostrophic momentum approximation. Bound-Layer Meteor., 40, 339–347.

    Article  Google Scholar 

  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 2949–2969.

    Article  Google Scholar 

  • Riehl, H., and R. J. Shafer, 1944: The recurvature of tropical storm. J. Atmos. Sci., 1, 42–54.

    Google Scholar 

  • Shu Shoujuan, Wang Yuan, and Bai Lina, 2013: Insight into the role of lower-layer vertical wind shear in tropical cyclone intensification over the western North Pacific. Acta Meteor. Sinica, 27(3), 356–363.

    Article  Google Scholar 

  • Tan Zhemin, Fang Juan, and Wu Rongsheng, 2005: Ekman boundary layer dynamic theories. Acta Meteor. Sinica, 63, 543–555. (in Chinese)

    Google Scholar 

  • Tuleya, R. E., and Y. Kurihara, 1981: A numerical study on the effects of environmental flow on tropical storm genesis. Mon. Wea. Rev., 109, 2487–2506.

    Article  Google Scholar 

  • Ueno, M., 2007: Observational analysis and numerical evaluation of the effects of vertical wind shear on the rainfall asymmetry in the typhoon inner-core region. J. Meteor. Soc. Japan, 85, 115–136.

    Article  Google Scholar 

  • Velden, C. S., and W. L. Smith, 1983: Monitoring tropical cyclone evolution with NOAA satellite microwave observations. J. Climate Appl. Meteor., 22(5), 714–724.

    Article  Google Scholar 

  • Wang Yuan, Song Jinjie, and Wu Rongsheng, 2013: A new insight into the contribution of environmental conditions to tropical cyclone activities. Acta Meteor. Sinica, 27(3), 344–355.

    Article  Google Scholar 

  • Wang, Y. Q., and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 3313–3332.

    Article  Google Scholar 

  • Willoughby, H. E., 1990: Gradient balance in tropical cyclones. J. Atmos. Sci., 47, 265–274.

    Article  Google Scholar 

  • Wong, M. L. M., and J. C. L. Chan, 2007: Modeling the effects of land-sea roughness contrast on tropical cyclone winds. J. Atmos. Sci., 64, 3249–3264.

    Article  Google Scholar 

  • Wu, G. X., and H. Z. Liu, 1998: Vertical vorticity development owing to down-sliding at slantwise isentropic surface. Dyn. Atmos. Oceans, 27, 715–743.

    Article  Google Scholar 

  • Wu, R. S., and W. Blumen, 1982: An analysis of Ekman boundary layer dynamics incorporating the geostrophic momentum approximation. J. Atmos. Sci., 39, 1774–1782.

    Article  Google Scholar 

  • Yu Yubin, Yang Changxian, and Yao Xiuping, 2007: The vertical structure characteristics analysis on abrupt intensity change of tropical cyclone over the offshore of China. Chinese J. Atmos. Sci., 31(5), 876–886. (in Chinese)

    Google Scholar 

  • Zehr, R. M., 2003: Environmental vertical wind shear with Hurricane Bertha (1996). Wea. Forecasting, 18, 345–356.

    Article  Google Scholar 

  • Zeng, Z. H., Y. Q. Wang, and L. S. Chen, 2010: A statistical analysis of vertical shear effect on tropical cyclone intensity change in the North Atlantic. Geophys. Res. Lett., 37, L02802.

    Google Scholar 

  • Zhao Yunwu, Song Jinjie, and Wang Yuan, 2010: The effect of mesoscale mountain in the boundary layer of the tropical cyclone. J. Zhejiang Univ. (Sci. Ed.), 37(6), 713–721. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Wang  (王 元).

Additional information

Supported by the National Nature Science Foundation of China (41275057, 91215302) and Research Fund of the Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology (KLME1103).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, N., Xu, X., Song, L. et al. Dynamic impact of the vertical shear of gradient wind on the tropical cyclone boundary layer wind field. Acta Meteorol Sin 28, 127–138 (2014). https://doi.org/10.1007/s13351-014-3058-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-014-3058-y

Key words

Navigation