Skip to main content
Log in

Dependence of Tropical Cyclone Intensification on the Latitude under Vertical Shear

  • Regular Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

The sensitivity of tropical cyclone (TC) intensification to the ambient rotation effect under vertical shear is investigated. The results show that the vortices develop more rapidly with intermediate planetary vorticity, which suggests an optimal latitude for the TC development in the presence of vertical shear. This is different from the previous studies in which no mean flow is considered. It is found that the ambient rotation has two main effects. On the one hand, the boundary layer imbalance is largely controlled by the Coriolis parameter. For TCs at lower latitudes, due to the weaker inertial instability, the boundary inflow is promptly established, which results in a stronger moisture convergence and thus greater diabatic heating in the inner core region. On the other hand, the Coriolis parameter modulates the vertical realignment of the vortex with a higher Coriolis parameter, favoring a quicker vertical realignment and thus a greater potential for TC development. The combination of these two effects results in an optimal latitude for TC intensification in the presence of a vertical shear investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bister, M., 2001: Effect of peripheral convection on tropical cyclone formation. J. Atmos. Sci., 58, 3463–3476, doi: 10.1175/1520-0469(2001)058<3463:EOPCOT>2.0.CO;2.

    Article  Google Scholar 

  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, doi: 10.1029/2001JD000776.

    Article  Google Scholar 

  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076–2088, doi: 10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    Article  Google Scholar 

  • DeMaria, M., and J. D. Pickle, 1988: A simplified system of equations for simulation of tropical cyclones. J. Atmos. Sci., 45, 1542–1554, doi: 10.1175/1520-0469(1988)045<1542:ASSOEF>2.0.CO;2.

    Article  Google Scholar 

  • DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219–233, doi: 10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.

    Article  Google Scholar 

  • Fang, J., and F. Zhang, 2012: Effect of beta shear on simulated tropical cyclones. Mon. Wea. Rev., 140, 3327–3346, doi: 10.1175/MWR-D-10-05021.1.

    Article  Google Scholar 

  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249–2269, doi: 10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    Article  Google Scholar 

  • Ge, X. Y., T. Li, and X. Q. Zhou, 2007: Tropical cyclone energy dispersion under vertical shears. Geophys. Res. Lett., 34, L23807, doi: 10.1029/2007GL031867.

    Google Scholar 

  • Ge, X. Y., T. Li, Y. Q. Wang, et al., 2008: Tropical cyclone energy dispersion in a three-dimensional primitive equation model: Upper-tropospheric influence. J. Atmos. Sci., 65, 2272–2289, doi: 10.1175/2007jas2431.1.

    Article  Google Scholar 

  • Ge, X. Y., T. Li, and M. Peng, 2013: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 3859–3875, doi: 10.1175/jas-d-13-066.1.

    Article  Google Scholar 

  • Ge, X. Y., W. Xu, and S. W. Zhou, 2015: Sensitivity of tropical cyclone intensification to inner-core structure. Adv. Atmos. Sci., 32, 1407–1418, doi: 10.1007/s00376-015-4286-5.

    Article  Google Scholar 

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700, doi: 10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    Article  Google Scholar 

  • Gray, W. M., 1979: Tropical cyclone intensity determination through upper-tropospheric aircraft reconnaissance. Bull. Amer. Meteor. Soc., 60, 1069–1074, doi: 10.1175/1520-0477(1979)060<1069:TCIDTU>2.0.CO;2.

    Article  Google Scholar 

  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 1559–1573, doi: 10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    Article  Google Scholar 

  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of tropical cyclone Diana (1984). J. Atmos. Sci., 61, 1209–1232, doi: 10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    Article  Google Scholar 

  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519–2541, doi: 10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    Article  Google Scholar 

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946, doi: 10.1002/qj.49711147002.

    Article  Google Scholar 

  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821–851, doi: 10.1002/qj.49712152406.

    Google Scholar 

  • Li, T., X. Y. Ge, M. Peng, et al., 2012: Dependence of tropical cyclone intensification on the Coriolis parameter. Trop. Cyclone Res. Rev., 1, 242–253, doi: 10.6057/2012TCRR02.04.

    Google Scholar 

  • McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 1132–1151, doi: 10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2.

    Google Scholar 

  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918–938, doi: 10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2.

    Google Scholar 

  • Rappin, E. D., and D. S. Nolan, 2012: The effect of vertical shear orientation on tropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 138, 1035–1054, doi: 10.1002/qj.977.

    Article  Google Scholar 

  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 3163–3188, doi: 10.5194/acp-10-3163-2010.

    Article  Google Scholar 

  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687–1697, doi: 10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    Article  Google Scholar 

  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378–394, doi: 10.1175/1520-0469(1982)039<0378:TROBHT7gt;2.0.CO;2.

    Article  Google Scholar 

  • Smith, R. K., G. Kilroy, and M. T. Montgomery, 2015: Why do model tropical cyclones intensify more rapidly at low latitudes? J. Atmos. Sci., 72, 1783–1804, doi: 10.1175/jas-d-14-0044.1.

    Article  Google Scholar 

  • Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 1817–1830, doi: 10.1175/2010JAS3318.1.

    Article  Google Scholar 

  • Tang, B., and K. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 1901–1912, doi: 10.1175/BAMS-D-11-00165.1.

    Article  Google Scholar 

  • Wang, Y. Q., 1995: An inverse balance equation in sigma coordinates for model initialization. Mon. Wea. Rev., 123, 482–488, doi: 10.1175/1520-0493(1995)123<0482:AIBEIS>2.0.CO;2.

    Article  Google Scholar 

  • Wang, Y. Q., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Wea. Rev., 129, 1370–1394, doi: 10.1175/1520-0493 (2001)129<1370:AESOTC>2.0.CO;2.

    Google Scholar 

  • Zhang, D.-L., and C. Q. Kieu, 2006: Potential vorticity diagnosis of a simulated hurricane. Part II: Quasi-balanced contributions to forced secondary circulations. J. Atmos. Sci., 63, 2898–2914, doi: 10.1175/JAS3790.1.

    Google Scholar 

  • Zhang, F. Q., and D. D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975–983, doi: 10.1175/JAS-D-12-0133.1.

    Article  Google Scholar 

  • Zhou, W. Y., 2015: The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state. J. Adv. Model. Earth Syst., 7, 1872–1884, doi: 10.1002/2015ms000543.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuyang Ge.

Additional information

Supported by the National Natural Science Foundation of China (41575056, 41775058, 41575043, and 41375095), National (Key) Basic Research and Development (973) Program of China (2015CB452803), National Key Research Project (2017YFA0603802), Key University Science Research Project of Jiangsu Province (14KJA170005), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, M., Ge, X. & Li, T. Dependence of Tropical Cyclone Intensification on the Latitude under Vertical Shear. J Meteorol Res 32, 113–123 (2018). https://doi.org/10.1007/s13351-018-7055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-7055-4

Keywords

Navigation