Skip to main content
Log in

Innovative technologies for structural health monitoring of SFTs: proposal of combination of infrared thermography with mixed reality

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

The paper focuses on a review of augmented reality/mixed reality (AR/MR) technologies in the perspective of the application to structural health monitoring (SHM) for submerged floating tunnels (SFT). In particular, Microsoft HoloLens Devices (MHD) are precious tools for survey purposes, since they allow the superimposition of information about the surrounding environment, leading to its complete control with a reduction of errors. Preliminary, the most common SHM techniques in traditional waterway crossings are examined, for identifying those best fitting with SFTs. The infrared (IR) thermography for damage detection is deepen. The possibility of connecting IR Camera and MHD, with the aim at facilitating the acquisition of thermal data and enabling stereoscopic thermal overlays in the worker’s augmented view, is examined through three different experiments, namely steel fatigue crack detection on a steel plate, CFRP delamination detection and coating thickness detection on a steel members. To this purpose, a simulation of the combination of thermal image with HoloLens is performed showing the potentiality of how the view of the thermal camera in front of the user can enhance the perception of possible problems on the target structure earlier with respect to analyzing the data afterwards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

adapted from [45]

Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

Data availability

All data generated and analysed during this study are included in this published article and available from corresponding author on specific reasonable requests.

References

  1. Rytter A (1993) Vibrational based inspection of civil engineering structures. Aalborg. Denmark, Publisher: Dept. of building technology and structural engineering. Series: fracture and dynamics number: 44, Vol. R9314. ISSN0902–7513.

  2. Remseth S, Leira B-J, Rönnquist A, Udahl G (1999) Dynamic response and fluid/structure interaction of submerged floating tunnels. Computers & Structures. Ph.D.-Thesis defended publicly at the University of Aalborg, April 20, 1993.

  3. Xiang Y, Yang Y (2016) Challenge in design and construction of submerged floating tunnel and state-of-art. Procedia Eng 166(2016):53–60. https://doi.org/10.1016/j.proeng.2016.11.562

    Article  Google Scholar 

  4. Teknologidagene K (2018) [Online]. Available: https://www.vegvesen.no/_attachment/2487060/binary/1294864?fast_title=Research+center+for+smart+submerged+floating+tunnel+system.pdf.

  5. Seo S-I, Sagong M, Son S-W (2015) Global response of submerged floating tunnel against underwater explosion. KSCE J Civ Eng 19:2029–2034

    Article  Google Scholar 

  6. Costanzo FA (2011) Underwater explosion phenomena and shock physics. Structural dynamics. Springer, New York, NY, pp 917–938

    Google Scholar 

  7. Liang B, Jiang B (2016) Study on composition and simulation analysis of traffic loads in submerged floating tunnels. Procedia Eng 166:180–189. https://doi.org/10.1016/j.proeng.2016.11.581

    Article  Google Scholar 

  8. Martinelli L (2018) Submerged floating tunnels under seismic and seaquake loadings. 9th maintenance, safety, risk, management and life-cycle performance of bridges (IABMAS), Melbourne, Australia. 1st Edition, 2018. Editors: Nigel Powers, Dan Frangopol, Riadh Al-Mahaidi, Colin Caprani. Publisher: CRC Press (ISBN: 9781315189390).

  9. Giurgiutiu V (2014) Structural health monitoring with piezoelectric wafer active sensors—predictive modeling and simulation. Incas Bull 2(3):31–44. https://doi.org/10.13111/2066-8201.2010.2.3.4

    Article  MathSciNet  Google Scholar 

  10. Hansen E, Zilberstein S (2001) Monitoring and control of anytime algorithms: a dynamic programming approach. Artif Intel 126(1–2):139–157. https://doi.org/10.1016/S0004-3702(00)00068-0

    Article  MathSciNet  Google Scholar 

  11. Yun C-B, Bahng E-Y (2000) Substructural identification using neural networks. Comput Struct 77(1):41–52. https://doi.org/10.1016/S0045-7949(99)00199-6

    Article  Google Scholar 

  12. Brownjohn J-M-W, Moyo P, Rizos C, Chuan T-S (2003) Practical issues in using novel sensors in SHM of civil infrastructure: problems and solutions in implementation of GPS and fibre optics. Proc., 4th Int. Workshop on SHM, Stanford Univ., Stanford, CA, 499–506.

  13. Setec - Regular inspection Tarascon - Beaucaira bridge https://www.setec.fr/en/realisations/inspection-dtaille-priodique-pont-de-tarascon-beaucaire

  14. Boller C (2006) Structural health monitoring – a design and integration issue. 1st Asia-Pacific workshop on structural health monitoring, December 4-6, 2006, Yokohama, Japan. Vol. 1, 647–657.

  15. Oliveira F-G-M, Morais P-G, Freitas A (2011) 400 mm base extensometer for measurement of structural deformations. Experimental vibration analysis for civil engineering structures (EVACES 2011), Italy, Verona. Editors: Zhishen Wu, Tomonori Nagayama, Ji Dang, Rodrigo Astroza. Publisher: EDP Sciences (ISBN: 9781510814578).

  16. Goanta V (2019) Extensometer for determining strains on a tensile and torsion simultaneous load. Sensors (Basel) 20(2):385. https://doi.org/10.3390/s20020385

    Article  Google Scholar 

  17. Gutkowski R, Robinson G, Peterson M, Tran A (1999) Field load testing of open-deck timber trestle railroad bridges. In Proc., RILEM symposium on timber engineering, Sept. 13–15, Stockholm, Sweden.

  18. Epsilontech [Online]. Available: https://www.epsilontech.com/products/bolt-elongation-extensometer-model-3565/.

  19. Althensensors [Online]. Available: https://www.althensensors.com/sensors/fiber-optical-sensors/fiber-optic-extensometers/4947/oep-c-fiber-optic-extensometer/

  20. Oliveira S-L (2014). Monitoramento e ensaio de pontes. VII Congresso Brasileiro de Pontes e Estruturas, Rio de Janeiro, 21–23 May, 2014. Editor: Starrylink.

  21. Hbk Company, 2020 [Online]. Available: https://www.hbm.com/en/0236/displacement-sensors-and-displacement-transducers/?product_type_no=Displacement%20Sensor.

  22. Fieldsr [Online]. Available: https://www.fieldsrl.it/en/wms/inclinometer-section/

  23. Domaneschi M, Sigurdardottir D, Glišic B (2017) Damage detection on output-only monitoring of dynamic curvature in composite decks. Struct Monit Maint 4(1):1–15. https://doi.org/10.12989/smm.2017.4.1.001

    Article  Google Scholar 

  24. Casciati S, Domaneschi M (2005) Damage assessment from SOFO dynamic measurements. Proceedings of SPIE - 17th international conference on optical fibre sensors. Marc Voet, Reinhardt Willsch, Wolfgang Ecke, Julian Jones, Brian Culshaw, eds. Vol. 5855. DOI: https://doi.org/10.1117/12.623656.

  25. Domaneschi M, Niccolini G, Lacidogna G, Cimellaro G-P (2020) Non destructive monitoring techniques for crack detection and localization in RC elements. Appl Sci 10:3248. https://doi.org/10.3390/app10093248

    Article  Google Scholar 

  26. Morgese M, Domaneschi M, Ansari F, Cimellaro G-P, Inaudi D (2021) Improving distributed fiber-optic sensor measures by digital image correlation: two-stage structural health monitoring. ACI Struct J. https://doi.org/10.14359/51732994

    Article  Google Scholar 

  27. Trimble 2018 [Online]. Available: https://www.trimble-italia.com/prodotti/software/trimble-access.

  28. Golaski L, Gebsky P, Ono K (2002) Diagnostics of reinforced concrete bridges by acoustic emission. Journal of acoustic emission 20 (1), 83-98, 2002. Acoustic Emission Group (ISSN: 0730-0050).

  29. Wickert J, Beyerle G, Hajj G, Schwieger V, Reigber C (2002) GPS radio occultation with champ: atmospheric profiling utilizing the space-based single difference technique. Geophys Res Lett. https://doi.org/10.1029/2001GL013982

    Article  Google Scholar 

  30. Jelalian A (1980) Laser radar systems. EASCON '80; electronics and aerospace systems conference, Arlington, VA, September 29-October 1, 1980.

  31. Meng X, Gogoi N (2011) Using multi-constellation GNSS and EGNOS for bridge deformation monitoring. Proceedings of the joint international symposium on deformation monitoring. Hong Kong, China, p. 2–4.

  32. Chen S-E (2012) Laser scanning technology for bridge monitoring. In: Apolinar Munoz J (ed) Rodriguez laser scanner technology. InTech, Janeza Trdine, Rijeka, Croatia (ISBN: 978-953-51-0280-9).

    Google Scholar 

  33. Harding G, Kosanetzky J-M (1989) Scattered X-ray beam nondestructive testing. Nucl Instrum Methods Phys Res Sect A 280(2–3):517–528

    Article  Google Scholar 

  34. Novatest, 2019. [Online]. Available: https://www.novatest.it/2019/11/15/la-radiografia-digitale-come-tecnica-di-ispezione-delle-infrastrutture/.

  35. Park B, Yeum C, Thanh CT (2013) Laser ultrasonic imaging and damage detection for a rotating structure. Struct Health Monit 12(5–6):494–506. https://doi.org/10.1177/1475921713507100

    Article  Google Scholar 

  36. Pan M, He Y, Tian G, Chen D, Luo F (2012) Defect characterisation using pulsed eddy current thermography under transmission mode and NDT applications. NDT E Int 52:28–36. https://doi.org/10.1016/j.ndteint.2012.08.007

    Article  Google Scholar 

  37. Rosen-Group. (2016, March 22nd). Measurement technology - Eddy current. Retrieved from https://www.rosen-group.com/global/company/explore/we-can/technologies/measurement/eddy-current.html

  38. Libby H (1971) Introduction to electromagnetic nondestructive test methods. Krieger Pub Co, Oregon

    Google Scholar 

  39. Merten A (2010) Non-destructive test methods for hollow-core composite insulators. 2010 International conference on high voltage engineering and application. New Orleans, LA, USA. DOI: https://doi.org/10.1109/ICHVE.2010.5640709.

  40. Zhao Q, Zhao Q, Dan X, Sun F, Wang Y, Wu S, Yang L (2018) Digital shearography for NDT: phase measurement technique and recent developments. Appl Sci 8(12):2662

    Article  Google Scholar 

  41. Maldague X (2002) Introduction to NDT by active infrared thermography. Materials Evaluation 60 (9), 1060–1073.

  42. Liu P, Lim HJ, Park B (2019) Noncontact nonlinear ultrasonic wave modulation for fatigue crack and delamination detection. NDT E Int 66:106–116. https://doi.org/10.1016/j.ndteint.2014.06.002

    Article  Google Scholar 

  43. I. D. C. IDC, IDC (2019) Expects augmented and virtual reality spending [Online]. Available: https://www.idc.com/getdoc.jsp?containerId=prEUR247725821.

  44. Steve M, Furness T, Yuan Y, Iorio J, Wang Z (2018) All reality: virtual, augmented, mixed (X), mediated (X,Y), and multimediated reality. ArXiv:1804.08386 [Cs]. Retrieved from http://arxiv.org/abs/1804.08386

  45. Milgram P, Kishino F (1994) A taxonomy of mixed reality visual displays. IEICE Transa Inform Syst 77(12):1321–1329

    Google Scholar 

  46. Palmarini R (2017) A systematic review of augmented reality applications in maintenance. Robot Comput-Integr Manuf 49:215–228

    Article  Google Scholar 

  47. Silva A-D (2009) Hybrid reality and location-based gaming: redefining mobility and game spaces in urban environments. Simul Gaming 40(3):404–424. https://doi.org/10.1177/1046878108314643

    Article  Google Scholar 

  48. Corporation I-D (2019) IDC expects augmented and virtual reality spending. Retrieved from https://www.idc.com/getdoc.jsp?containerId=prAP44957819.

  49. Trimble Inc. (2019). Trimble XR10 with HoloLens. https://fieldtech.trimble.com/en/products/mixed-reality/trimble-xr10-with-hololens-2. Accessed 01 oct 2021.

  50. Gervautz M, Schmalstieg D (2012) Anywhere interfaces using handheld augmented reality. Computer 45(7):26–31. https://doi.org/10.1109/MC.2012.72

    Article  Google Scholar 

  51. Pluraview (2020) [Online]. Available: https://www.3d-pluraview.com/en/

  52. UploadVR (2017) [Online]. Available: https://uploadvr.com/hololamp-projector-ar-holograms/

  53. Google glass surgeon (2013) Retrieved from http://www.googleglasssurgeon.com/surgery

  54. Microsoft (2017). Windows mixed reality—gestures. Retrieved from https://developer.microsoft.com/en-us/windows/mixed-reality/gestures

  55. Rubino D (2016) Microsoft HoloLen–here are the full processor, storage. Retrieved from https://www.windowscentral.com/microsoft-hololens-processor-storage-and-ram

  56. Taylor A (2017) Develop microsoft HoloLens app now. Apress, Oregon, USA. https://doi.org/10.1007/978-1-4842-2202-7 (ISBN: 978-1-4842-2201-0)

    Book  Google Scholar 

  57. Harsha S, Bhavya G (2018) Google glass. International Journal of Advance Research, Ideas and Innovations in Technology. 4(3). IJARIIT.

  58. Jasoren [Online]. Available: https://jasoren.com/augmented-reality-military/

  59. Taylor A (2019). Microsoft dynamics_365. Retrieved from https://blogs.microsoft.com/blog/2018/09/18/announcing-new-ai-and-mixed-reality-business-applications-for-microsoft-dynamics/

  60. Lee G-A, Duenser A (2012) CityViewAR: a mobile outdoor AR application for city visualization. IEEE international symposium on mixed and augmented reality–Arts, Media, and Humanities (ISMAR-AMH), Atlanta, USA, 2012. Editor: University of Canterbury. Human Interface Technology Laboratory

  61. OutSource2India (2018) Retrieved from https://www.outsource2india.com/eso/articles/augmented-reality-can-help-architects-engineers.asp#

  62. Engadget (2017) Retrieved from https://www.engadget.com/2017/01/25/hololens-is-helping-engineers-visualize-building-blueprints/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAABU9DZXLrQRfua4TE0yOH7WyqcTFxq263mmNr7FFL5weqgyQrEHLybYJQSsu1yRlJT6BgDumers7f

  63. GA smart building (2018) Retrieved from https://www.ga.fr/en/

  64. Bentley_systems (2017) Retrieved from https://communities.bentley.com/other/old_site_member_blogs/bentley_employees/b/stephanecotes_blog/posts/using-the-hololens-for-accurate-subsurface-utility-pipes-augmented-reality

  65. Wu Z, Mei G (2017) Dynamic response analysis of cable of submerged floating tunnel under hydrodynamic force and earthquake. Shock Vib 2017(1):1–14. https://doi.org/10.1155/2017/3670769

    Article  MathSciNet  Google Scholar 

  66. ITA. (2011). Monitoring and control in tunnel construction. WG2 Research.

  67. Ki J-M, Lee J, Sohn H (2018) Detection of tension force reduction in a post-tensioning tendon using pulsed-eddy-current measurement. Struct Eng Mec 65(2):129–139. https://doi.org/10.12989/SEM.2018.65.2.129

    Article  Google Scholar 

  68. Sheppard R, Spong R, Sauls M, Hosch P, Danaczko M, Puskar F, Leverette S (2019) Integrity management process of tension leg platforms. Offshore technology conference, Houston, Texas, May 2019. Paper num.: OTC-29661-MS. https://doi.org/10.4043/29661-MS.

  69. Hong K-Y, Lee G-H (2014) Collision analysis of submerged floating tunnel by underwater navigating vessel. J Comput Struct Eng Inst Korea 27(5):369–377

    Article  Google Scholar 

  70. Lee Y, Kim D-M, Han S-H, Park W-S (2013) Impact analysis of submerged floating tunnel for external collision. Proceedings of the 7th international conference on Asian and Pacific coasts (APAC 2013) Bali, Indonesia, September 24–26, 2013, p. 214–219. Editors: Dadang A. Suriamihardja, T. Harianto, M. A. Abdurrahman, T. Rachman. ISBN: 978–979–530–125–7.

  71. Faggiano B, Iovane G, Mazzolani F-M, Landolfo R (2021) Preliminary study on the behaviour of the SFT Qiandao prototype against explosions and impacts . Proceedings of the 14th international conference on vibration problems (ICOVP 2019), 1–4september, Crete, Greece, E. J. Sapountzakis et al. (eds.), Lecture Notes in Mechanical Engineering, SPRINGER NATURE Singapore Pte Ltd. 2021 https://doi.org/10.1007/978-981-15-8049-9_50.

  72. Almir D, Chang H (2012) Underwater wireless sensor networks. Oceans 2012, Hampton Roads, VA, USA, 14-19 October 2012, 1–5. IEEE Xplore, Piscataway. https://doi.org/10.1109/oceans.2012.6405141 (ISSN: 0197-7385)

    Chapter  Google Scholar 

  73. Maldague X. (2001). Theory and Practice of Infrared Technology for Nondestructive Testing. John Wiley & Son, New York, 2001 (ISBN: 978-0-471-18190-3).

  74. Kayes RJ (1977) Optical and infrared detectors. Appl Phys. https://doi.org/10.1002/piuz.19790100308

    Article  Google Scholar 

  75. Steen W-M, Mazumder J (2010) Laser material processing. Springer Science & Business Media, Arrington, UK

    Book  Google Scholar 

  76. Hwang S (2016) Development of a line laser thermography system for structural damage detection under dynamic conditions. Advisors: Sohn, Hoon; Son Hoon; Korea Advanced institute of science and technology: department of construction and environmental engineering, Publisher: Korea advanced institute of science and technology. Thesis (Master) - Korea advanced institute of science and technology: department of construction and environmental engineering, 2016.8, [p. num. 47 ]

  77. Ma J, Niu X, Liu X, Wang Y, Wen T, Zhang J (2019) Thermal infrared imagery integrated with terrestrial laser scanning and particle tracking velocimetry for characterization of landslide model failure. Sensors (Basel). 20(1):219. https://doi.org/10.3390/s20010219

    Article  Google Scholar 

  78. Castanedo C-I, Genest M, Piau J, Guibert S, Bendada A, Maldague X (2007) Active infrared thermography techniques for the nondestructive testing of materials. Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization. World Scientific Publishing Company; 1st edition: Chapter X, 325-348, 2007 (ISBN-10: 9812704094).

  79. Kaplan H (1999) Practical applications of infrared thermal sensing and imaging equipmen, 3rd edn. SPIE Publications, Bellingham, Washington USA. https://doi.org/10.1117/3.725072 (ISBN: 9780819467232)

    Book  Google Scholar 

  80. Martin L, Zhao H, Ganippa L (2013) Gas phase thermometry of hot turbulent jets using laser induced phosphorescence. Opt Express 21(10):12260–12281. https://doi.org/10.1364/OE.21.012260

    Article  Google Scholar 

  81. Ciampa F, Mahmoodi P, Pinto F, Meo M (2018) Recent advances in active infrared thermography for non-destructive testing of aerospace components. Sensors 18(2):609. https://doi.org/10.3390/s18020609

    Article  Google Scholar 

  82. Tenek L-H, Henneke E-G (1991) Flaw dynamics and vibro-thermographic thermoelastic NDE of advanced composite materials. In: Baird GS (ed) Thermosense XIII, vol 1467. SPIE, Bellingham, Washington USA, 252–263. https://doi.org/10.1117/12.46440

  83. Ambrozinski L, Piwakowski B, Pieczonka L, Uhl T (2014) Pitch-catch air-coupled ultrasonic technique for detection of barely visible impact damages in composite laminates. EWSHM–7th European workshop on structural health monitoring, IFFSTTAR, Inria, Université de Nantes, Jul 2014, Nantes, France. ffhal-01022043f.

  84. Ghosh K-K, Karbhari V-M (2011) Use of infrared thermography for quantitative non-destructive evaluation in FRP strengthened bridge systems. Mater Struct/Materiaux et Constr 44:169–185. https://doi.org/10.1617/s11527-010-9617-5. (ISSN: 1359-5997)

    Article  Google Scholar 

  85. Hiasa S, Catbas N, Matsumoto M, Mitani K (2016) Monitoring concrete bridge decks using infrared thermography with high speed vehicles. Struct Monit Maint Int J 3:277–296. https://doi.org/10.12989/smm.2016.3.3.277

    Article  Google Scholar 

  86. Matsumoto M, Mitani K, Masanobu S, Kazuaki H, Rick M (2012) Innovative bridge assessment methods using image processing and infrared thermography technology. IABSE Congress Report. 18. https://doi.org/10.2749/222137912805111636.

  87. MATLAB - Code compatibility analyzer R2022a, 2022. MathWorks. End-User License Agreement (EULA).

  88. IRBIS3 Pro - Infrared thermographic software by INFRATEC, 2008. https://www.infratec.eu/thermography/thermographic-software/#c47500

  89. Hwang S, An Y-K, Kim J-M, Sohn H (2019) Monitoring and instantaneous evaluation of fatigue crack using integrated passive and active laser thermography. Opt Lasers Eng 119:9–17. https://doi.org/10.1016/j.optlaseng.2019.02.001

    Article  Google Scholar 

  90. Hwang S, An Y-K, Sohn H (2017) Continuous line laser thermography for damage imaging of rotating wind turbine blades. Procedia Eng 188(2017):225–232

    Article  Google Scholar 

  91. Hong X-G, Liu H (2014) Roberts edge detection algorithm based on GPU. J Chem Pharm Res 6(7):1308–1314

    Google Scholar 

  92. Gonzales R-C, Woods R-E, Eddins S-L (2014) Digital image processing using MATLAB, 2nd edn. McGraw Hill Education, USA (ISBN: 0982085400)

    Google Scholar 

  93. Hough Transform (1972). Hough transform. Retrieved from https://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm

  94. Ericksonn A, Kim K, Ryan S, Gerd B, Greg W (2019) Is it cold in here or is it just me? Analysis of augmented reality temperature visualization for computer-mediated thermoception. 2019 IEEE international symposium on mixed and augmented reality (ISMAR) - Beijing, China (2019.10.14–2019.10.18).

  95. Mascareñas D, Harden T, Morales J, Boardman B, Sosebee E, Blackhart C, Cattaneo A, Krebs M, Tockstein J, Green A, Dasari S, Bleck B, Katko B, Moreu F, Maharjan D, Aguero M, Fernandez R, Trujillo J, Wysong A (2019) Augmented reality for enabling smart nuclear infrastructure. Front Built Environ. https://doi.org/10.3389/fbuil.2019.00082

    Article  Google Scholar 

  96. Aguero M, Maharjan D, Rodriguez M-P, Mascarenas D-D, Moreu F (2020) Design and implementation of a connection between augmented reality and sensors. Robotics 9(1):3. https://doi.org/10.3390/robotics9010003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Faggiano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palma, V., Iovane, G., Hwang, S. et al. Innovative technologies for structural health monitoring of SFTs: proposal of combination of infrared thermography with mixed reality. J Civil Struct Health Monit 13, 1653–1681 (2023). https://doi.org/10.1007/s13349-023-00698-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-023-00698-1

Keywords

Navigation