Skip to main content
Log in

Structural health monitoring of the retrofitting process, characterization and reliability analysis of a masonry heritage construction

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

In the last decades, heritage constructions (HC) had been rehabilitated and inserted in functional areas of cities, therefore, the necessity for keeping them structurally safe and functional is high. Therefore, the employment of structural health monitoring (SHM) and operational modal analysis (OMA) techniques can be worthy alternatives for structural characterization and safety management. However, in the literature few cases of SHM of HC are reported, and guidelines or recommendations specifically for safety assessment of HC is an effort still undergoing. Thus, the present work describes the strategies for SHM and structural characterization of a Portuguese stone heritage construction, namely Santo António Church and introduces a new approach for heritage assessment so-called Reliability Analysis Based on Vibrational Measures (RABVIM). The results showed that SHM allowed to guarantee the efficiency level of the retrofitting measures carried out, while OMA provided useful information on the structure modal parameters, under operational loading actuation, apart from the data for reliability assessment. Finally, this work demonstrates that RABVIM can be an interesting and useful tool to support the safety assessment of HC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Parisi F, Augenti N (2013) Earthquake damages to cultural heritage constructions and simplified assessment of artworks. Eng Fail Anal 34:735–760. doi:10.1016/j.engfailanal.2013.01.005

    Article  Google Scholar 

  2. Cen (2004) Eurocode 8: design of structures for earthquake resistance Part 3: assessment and retrofitting of buildings. Comité Européen de Normalisation, Bruxelles

  3. Cimellaro GP, De Stefano A (2014) Ambient vibration tests of XV century Renaissance Palace after 2012 Emilia earthquake in Northern Italy. Struct Monit Maint 1:231–247. doi:10.12989/smm.2014.1.2.231

    Google Scholar 

  4. Gattulli V, Lepidi M, Potenza F (2016) Dynamic testing and health monitoring of historic and modern civil structures in Italy. Struct Monit Maint 3:71–90. doi:10.12989/smm.2016.3.1.071

    Google Scholar 

  5. Gentile C, Saisi A (2007) Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Constr Build Mater 21:1311–1321. doi:10.1016/j.conbuildmat.2006.01.007

    Article  Google Scholar 

  6. De Stefano A, Matta E, Clemente P (2016) Structural health monitoring of historical heritage in Italy: some relevant experiences. J Civ Struct Heal Monit 6:83–106. doi:10.1007/s13349-016-0154-y

    Article  Google Scholar 

  7. Samuels JM, Reyer M, Hurlebaus S et al (2011) Wireless sensor network to monitor an historic structure under rehabilitation. J Civ Struct Heal Monit 1:69–78. doi:10.1007/s13349-011-0008-6

    Article  Google Scholar 

  8. Mesquita E, Arêde A, Paupério E, Pinto N (2016) SHM of heritage constructions through wireless sensor network: from design to the long-term monitoring. In: XVII international conference on structure repair rehabilitation, Porto

  9. dei Ministri P del C (2011) Valutazione e riduzione del rischio sismico del patrimonio culturale con riferimento alle norme tecniche per le costruzioni di cui al DM 14 Gennaio 2008

  10. Mesquita E, Antunes P, Coelho F et al (2016) Global overview on advances in structural health monitoring platforms. J Civ Struct Heal Monit 6:461–475. doi:10.1007/s13349-016-0184-5

    Article  Google Scholar 

  11. Boscato G, Dal Cin A, Ientile S, Russo S (2016) Optimized procedures and strategies for the dynamic monitoring of historical structures. J Civ Struct Heal Monit 6:265–289. doi:10.1007/s13349-016-0164-9

    Article  Google Scholar 

  12. Lima HF, Vicente RDS, Nogueira RN et al (2008) Structural health monitoring of the Church of Santa Casa da Misericórdia of Aveiro using FBG sensors. IEEE Sens J 8(7):1236–1242. doi:10.1109/JSEN.2008.926177

    Article  Google Scholar 

  13. Abruzzese D, Angelaccio M, Giuliano R et al (2009) Monitoring and vibration risk assessment in cultural heritage via wireless sensors network. In: 2009 2nd conference on human system interaction, pp 568–573. doi:10.1109/HSI.2009.5091040

  14. Mita A, Sato H, Kameda H (2010) Platform for structural health monitoring of buildings utilizing smart sensors and advanced diagnosis tools. Struct Control Heal Monit 17:795–807. doi:10.1002/stc.399

    Article  Google Scholar 

  15. Balsamo D, Paci G, Benini L, Davide B (2013) Long term, low cost, passive environmental monitoring of heritage buildings for energy efficiency retrofitting. IEEE Work Environ Energy Struct Monit Syst 2013:1–6. doi:10.1109/EESMS.2013.6661695

    Google Scholar 

  16. Canada ISIS (2001) Guidelines for structural health monitoring. ISIS Canada, Winnipeg

    Google Scholar 

  17. Daum W (2013) Guidelines for structural health monitoring. In: Czichos H (ed) Handbook of technical diagnostics. Springer, Berlin, pp 539–541

    Chapter  Google Scholar 

  18. Wenzel H (2009) Health monitoring of bridges, 1st edn. Wiley, Vienna

    Book  Google Scholar 

  19. Okasha NM, Frangopol DM, Saydam D (2015) Reliability analysis and damage detection in high-speed naval craft based on structural health monitoring data. Struct Health Monit Data. doi:10.1177/1475921710379516

    Google Scholar 

  20. Dissanayake PBR, Karunananda PAK (2008) Reliability index for structural health monitoring of aging bridges. Struct Heal Monit 7:175–183. doi:10.1177/1475921708090555

    Article  Google Scholar 

  21. Mesquita E, Antunes P, Henriques AA et al (2016) Structural reliability assessment based on optical monitoring system: case study. IBRACON Struct Mater J 9:297–305. doi:10.1590/S1983-41952016000200009

    Article  Google Scholar 

  22. Musiani D, Lin K, Rosing TS (2007) Active sensing platform for wireless structural health monitoring. In: 6th international symposium on information process and sensor networks, pp 390–399. doi:10.1109/IPSN.2007.4379699

  23. Dan D, Yang T, Gong J (2014) Intelligent platform for model updating in a structural health monitoring system. Math Probl Eng 2014:1–11. doi:10.1155/2014/628619

    Article  Google Scholar 

  24. Okasha NM, Frangopol DM, Saydam D, Salvino LW (2010) Reliability analysis and damage detection in high-speed naval craft based on structural health monitoring data. Struct Heal Monit 10:361–379. doi:10.1177/1475921710379516

    Article  Google Scholar 

  25. Vicente R (2008) Estratégias e metodologias para intervenções de reabilitação urbana: avaliação da vulnerabilidade e do risco sísmico do edificado, Ph.D. Thesis. University of Aveiro, Aveiro

  26. Cremona C (2011) Structural performance: probabilistic-based assessment, 1st edn. ISTE, London

    Google Scholar 

  27. Liu M, Asce M, Frangopol DM et al (2009) Bridge system performance assessment from structural health monitoring: a case study. J Struct Eng 135:733–742

    Article  Google Scholar 

  28. Haldar A, Mahadevan S (2000) Probability, reliability and statistical methods in engineering desing, 1st edn. Wiley, New York

    Google Scholar 

  29. European Commitee for Standardization (2004) Eurocode 8: design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. Eur Commun Stand 1:231

    Google Scholar 

  30. Almeida C (2013) Paredes de alvenaria do Porto: Tipificação e caracterização experimental, PhD Thesis. University of Porto, Porto

    Google Scholar 

  31. Delgado R, Costa A, Rocha P et al (2006) Proposta de intervenção—Igreja de Santo António de Viana do Castelo, Porto

  32. Delgado R, Costa A, Rocha P et al (2002) Relatório de inspeção—Igreja de Santo António de Viana do Castelo, Porto

  33. Costa A, Rocha P, Paupério E (2013) Implementação de Medidas de Consolidação e Reforço Estrutural da Igreja de Santo António de Viana do Castelo, Porto

  34. Costa A, Rocha P, Paupério E (2012) Nota técnica intervenção de reforço igreja de santo antónio v, Porto

  35. Arêde A, Paupério E, Rocha P, Gomes A (2015) Igreja de Santo António de Viana—Relatório de monitorização, p 30

  36. AFNOR (2012) Pr EN ISO 22476-4. Reconnaissance et essais géotechniques Essais en place - Partie 4: Essai au pressiomètre Ménard

  37. Briaud J (1992) The pressuremeter. Trans Tech Publications, Rotterdam

    Google Scholar 

  38. Magalhães F, Cunha A (2011) Explaining operational modal analysis with data from an arch bridge. Mech Syst Signal Process 25:1431–1450. doi:10.1016/j.ymssp.2010.08.001

    Article  Google Scholar 

  39. Le T, Tamura Y (2009) Modal identification of ambient vibration structure using frequency domain decomposition and wavelet transform. In: Proceedings of the 7th Asia-Pacific conference on wind engineering, Taipei, Taiwan, 2009

  40. Rainieri C, Fabbrocino G (2014) Operational modal analysis of civil engineering structures: an introduction and guide for applications. Springer, New York

    Book  Google Scholar 

  41. Structural Vibration Solutions (2013) Artemis extractor 5.3 software

Download references

Acknowledgements

Esequiel Mesquita acknowledge CAPES through the Fellowship Number 10023/13-5, CAPES Foundation, Ministry of Education of Brazil. Paulo Antunes acknowledge the funding allocated by the Portuguese Foundation for Science and Technology to I3N through strategic Project UID/CTM/50025/2013. The authors acknowledge Sir. Valdemar Luis for the technical support and Regional Direction of Culture of North (DRCN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esequiel Mesquita.

Ethics declarations

Funding

This study was funded by Project POCI-01-0145-FEDER-007457—CONSTRUCT—Institute of R&D in Structures and Construction funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI)—and by national funds through FCT—Fundação para a Ciência e a Tecnologia.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesquita, E., Arêde, A., Silva, R. et al. Structural health monitoring of the retrofitting process, characterization and reliability analysis of a masonry heritage construction. J Civil Struct Health Monit 7, 405–428 (2017). https://doi.org/10.1007/s13349-017-0232-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-017-0232-9

Keywords

Navigation