Skip to main content
Log in

Ultrasonic imaging algorithm for the health monitoring of pipes

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

This paper presents a numerical study where guided ultrasonic waves (GUWs) are processed using a new imaging algorithm for the health monitoring of pipes. The numerical model mimics the generation and detection of guided waves from the transducers of two annular arrays located inside a pipe. The fastest mode of the detected signals is processed using the continuous wavelet transform and the Hilbert transform to extract two damage-sensitive features. The estimation of the features for the healthy condition is formulated in terms of an optimization problem solved with a competitive optimization algorithm. Finally, a probabilistic approach is used to create an image of the pipe to reveal the presence of possible structural anomalies. With respect to most GUW-based imaging methods, the proposed approach is baseline-free which means that data from pristine pipes are not necessary. A commercial finite element code is utilized to mimic the operation of the two arrays each made of four ultrasonic transducers in contact with the interior wall of a pipe. While one of the transducers acts as transmitter, the other seven act as sensors, and this is repeated for all the elements of the rings. The time waveforms associated with all the possible actuator–sensor pairs are processed using the algorithm proposed here. To demonstrate the advantages of the proposed approach, the findings are compared to the results obtained using a conventional pitch-catch approach. The results are promising and future studies should focus on the experimental validation of the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Shin HJ, Rose JL (1998) Guided wave tuning principles for defect detection in tubing. J Nondestruct Eval 17(1):27–36

    Article  Google Scholar 

  2. Guo D, Kundu T (2001) A new transducer holder mechanism for pipe inspection. J Acoust Soc Am 110(1):303–309

    Article  Google Scholar 

  3. Valle C, Niethammer M, Qu J, Jacobs LJ (2001) Crack characterization using guided circumferential waves. J Acoust Soc Am 110(3):1282–1290

    Article  Google Scholar 

  4. Barshinger J, Rose JL, Avioli MJ (2002) Guided wave resonance tuning for pipe inspection. J Press Vess-T ASME 124:303–310

    Article  Google Scholar 

  5. Na WB, Kundu T (2002) Underwater pipeline inspection using guided waves. J Press Vess-T ASME 124(2):196–200

    Article  Google Scholar 

  6. Demma A, Cawley P, Lowe M, Roosenbrand AG (2003) The reflection of the fundamental torsional mode from cracks and notches in pipes. J Acoust Soc Am 114(2):611–625

    Article  Google Scholar 

  7. Torres-Arredondo MA, Buethe I, Tibaduiza DA, Rodellar J, Fritzen CP (2013) Damage detection and classification in pipework using acousto-ultrasonics and non-linear data-driven modelling. J Civil Struct Health Monit 3(4):297–306

    Article  Google Scholar 

  8. Cawley P, Lowe M, Alleyne DN, Pavlakovic B, Wilcox PD (2003) Practical long range guided wave testing: applications to pipes and rail. Mater Eval 61(1):66–74

    Google Scholar 

  9. Todoroki A, Takeuchi Y, Shimamura Y, Iwasaki A, Sugiya T (2004) Fracture monitoring system of sewer pipe with composite fracture sensors via the Internet. Struct Health Monit 3(1):5–17

    Article  Google Scholar 

  10. Zhu X, Rizzo P (2014) Sensor array for the health monitoring of truss structures by means of guided ultrasonic waves. J Civil Struct Health Monit 4(3):221–234

    Article  Google Scholar 

  11. Vasiljevica M, Kundu T, Grill W, Twerdowski E (2008) Pipe wall damage detection by electromagnetic acoustic transducer generated guided waves in absence of defect signals. J Acoust Soc Am 123(5):2591–2597

    Article  Google Scholar 

  12. Kim HW, Lee HJ, Kim YY (2012) Health monitoring of axially-cracked pipes by using helically propagating shear-horizontal waves. NDT&E Int 46:115–121

    Article  Google Scholar 

  13. Nagy PB, Simonetti F, Instanes G (2014) Corrosion and erosion monitoring in plates and pipes using constant group velocity Lamb wave inspection. Ultrasonics 54(7):1832–1841

    Article  Google Scholar 

  14. Dehghan-Niri E, Salamone S (2014) A multi-helical ultrasonic imaging approach for the structural health monitoring of cylindrical structures. Struct Health Monit 14(1):73–85

    Article  Google Scholar 

  15. Hu B, Hu N, Li L, Li W, Tang S, Li Y, Peng X, Homma A, Liu Y, Wu L, Ning H (2014) Tomographic reconstruction of damage images in hollow cylinders using Lamb waves. Ultrasonics 54(7):2015–2023

    Article  Google Scholar 

  16. Eybpoosh M, Berges M, Noh HY (2016) Sparse representation of ultrasonic guided-waves for robust damage detection in pipelines under varying environmental and operational conditions. Struct Control Health Monit 23(2):369–391

    Article  Google Scholar 

  17. Kannan E, Maxfield BW, Balasubramaniam K (2007) SHM of pipes using torsional waves generated by in situ magnetostrictive tapes. Smart Mater Struct 16:2505–2515

    Article  Google Scholar 

  18. Kim YY, Park CI, Cho SH, Han SW (2005) Torsional wave experiments with a new magnetostrictive transducer configuration. J Acoust Soc Am 117(6):3459–3468

    Article  Google Scholar 

  19. Vogelaar B, Golombok M (2016) Quantification and localization of internal pipe damage. Mech Syst Signal Pr 78:107–117

    Article  Google Scholar 

  20. Liu K, Wu Z, Jiang Y, Wang Y, Zhou K, Chen Y (2016) Guided waves based diagnostic imaging of circumferential cracks in small-diameter pipe. Ultrasonics 65:34–42

    Article  Google Scholar 

  21. Liu C, Harley JB, Bergés M, Greve DW, Oppenheim IJ (2015) Robust ultrasonic damage detection under complex environmental conditions using singular value decomposition. Ultrasonics 58:75–86

    Article  Google Scholar 

  22. Wu J, Wang Y, Zhang W, Nie Z, Lin R, Ma H (2017) Defect detection of pipes using Lyapunov dimension of Duffing oscillator based on ultrasonic guided waves. Mech Syst Signal Pr 82(1):130–147

    Article  Google Scholar 

  23. Huthwaite P, Seher M (2015) Robust helical path separation for thickness mapping of pipes by guided wave tomography. IEEE T Ultrason Ferr 62(5):927–938

    Article  Google Scholar 

  24. Rizzo P, Bartoli I, Marzani A, Lanza di Scalea F (2005) Defect classification in pipes by neural networks using multiple guided ultrasonic wave features extracted after wavelet processing. J Press Vess-T ASME 127:294–303

    Article  Google Scholar 

  25. Liu Y, Li Z, Gong K (2012) Detection of a radial crack in annular structures using guided circumferential waves and continuous wavelet transform. Mech Syst Signal Pr 30:157–167

    Article  Google Scholar 

  26. Rizzo P, Sorrivi E, Lanza di Scalea F, Viola E (2007) Wavelet-based outlier analysis for guided wave structural monitoring: application to multi-wire strands. J Sound Vib 307(1–2):52–68

    Article  Google Scholar 

  27. Ahmad R, Banerjee S, Kundu T (2009) Pipe wall damage detection in buried pipes using guided waves. J Press Vess-T ASME 131:011501

    Article  Google Scholar 

  28. Lee C, Park S (2012) Damage classification of pipelines under water flow operation using multi-mode actuated sensing technology. Smart Mater Struct 20(11):115002

    Article  Google Scholar 

  29. Amjad U, Yadav SK, Kundu T (2015) Detection and quantification of pipe damage from change in time of flight and phase. Ultrasonics 62:223–236

    Article  Google Scholar 

  30. Cheraghi N, Taheri F (2007) A damage index for structural health monitoring based on the empirical mode decomposition. J Mech Mater Struct 2(1):43–62

    Article  Google Scholar 

  31. Esmaeel RA, Briand J, Taheri F (2012) Computational simulation and experimental verification of a new vibration-based structural health monitoring approach using piezoelectric sensors. Struct Health Monit 11:237–250

    Article  Google Scholar 

  32. Tua PS, Quek ST, Wang Q (2005) Detection of cracks in cylindrical pipes and plates using piezo-actuated Lamb waves. Smart Mater Struct 14:1325–1342

    Article  Google Scholar 

  33. Bagheri A, Li K, Rizzo P (2013) Reference-free damage detection by means of wavelet transform and empirical mode decomposition applied to Lamb waves. J Int Mater Syst Struct 24(2):194–208

    Article  Google Scholar 

  34. Leonard KR, Hinders MK (2003) Guided wave helical ultrasonic tomography of pipes. J Acoust Soc Am 114(2):767–774

    Article  Google Scholar 

  35. Hayashi T, Murase M (2005) Defect imaging with guided waves in a pipe. J Acoust Soc Am 117(4):2134–2140

    Article  Google Scholar 

  36. Deng F, Wu B, He C (2008) A time-reversal defect-identifying method for guided wave inspection in pipes. J Press Vess-T ASME 130:021503

    Article  Google Scholar 

  37. Davies J, Cawley P (2009) The application of synthetic focusing for imaging crack-like defects in pipelines using guided waves. IEEE T Ultrason Ferr 56(4):759–771

    Article  Google Scholar 

  38. Davies J, Simonetti F, Lowe M, Cawley P (2006) Review of synthetically focused guided wave imaging techniques with application to defect sizing. Rev Quant Nondest Eval 820(1):142–149

    Article  Google Scholar 

  39. Giurgiutiu V, Bao JJ (2004) Embedded-ultrasonics structural radar for in situ structural health monitoring of thin-wall structures. Struct Health Monit 3(2):121–140

    Article  Google Scholar 

  40. Quaegebeur N, Masson P, Langlois-Demers D, Micheau P (2011) Dispersion-based imaging for structural health monitoring using sparse and compact arrays. Smart Mater Struct 20:025005

    Article  Google Scholar 

  41. Lee H, Yang J, Sohn H (2012) Baseline-free pipeline monitoring using optical fiber-guided laser ultrasonics. Struct Health Monit 11(6):684–695

    Article  Google Scholar 

  42. Bagheri A, Razeghi HR, Ghodrati Amiri G (2012) Detection and estimation of damage in structures using imperialist competitive algorithm. Shock Vib 19(3):405–419

    Article  Google Scholar 

  43. Nicknam A, Hosseini MH (2012) Structural damage localization and evaluation based on modal data via a new evolutionary algorithm. Arch Appl Mech 82:191–203

    Article  MATH  Google Scholar 

  44. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. IEEE Congress on Evolutionary Computation, Singapore

    Google Scholar 

  45. Rajabioun R, Atashpaz-Gargari E, Lucas C (2008) Colonial competitive algorithm as a tool for Nash equilibrium point achievement. Lect Notes Comput Sci 5073:680–695

    Article  MATH  Google Scholar 

  46. Alleyne DN, Cawley P (1991) A two dimensional Fourier transform method for measurement of propagating multimode signals. J Acoust Soc Am 89:1159–1168

    Article  Google Scholar 

  47. Bartoli I, Lanza di Scalea F, Fateh M, Viola E (2005) Modeling guided wave propagation with application to the long-range defect detection in railroad tracks. NDT&E Int 38:325–334

    Article  Google Scholar 

  48. Moser F, Jacobs LJ, Qu J (1999) Modeling elastic wave propagation in waveguides with the finite element method. NDT&E Int 32:225–234

    Article  Google Scholar 

  49. Sale M, Rizzo P, Marzani A (2011) Semi-analytical formulation for the guided waves-based reconstruction of elastic moduli. Mech Syst Signal Process 25:2241–2256

    Article  Google Scholar 

  50. Marzani A, Viola E, Bartoli I, Lanza di Scalea F, Rizzo P (2008) A semi-analytical finite element formulation for modeling stress wave propagation in axisymmetric damped waveguides. J Sound Vib 318(3):488–505

    Article  Google Scholar 

  51. Zienkiewicz OC (1977) The finite element method. McGraw-Hill, London

    MATH  Google Scholar 

  52. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A 454:903–995

    Article  MathSciNet  MATH  Google Scholar 

  53. Mallat S (1999) A wavelet tour of signal processing. Academic Press, New York

    MATH  Google Scholar 

Download references

Acknowledgements

This study was funded by the Center for Energy at the University of Pittsburgh’s Swanson School of Engineering and by the National Science Foundation, Grants CMMI – 0825983 and CMMI – 1029457 awarded to the second author. The first author conducted this study as a PhD candidate at the University of Pittsburgh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Bagheri.

Appendix: Application of the competitive optimization algorithm

Appendix: Application of the competitive optimization algorithm

First, we define the features following the method presented in Sect. 4.2. For example, the results associated with the CWT analysis using Eq. (16) applied to the 3rd sensing path (actuator–sensor path length equal to 200 mm) are

$$\begin{aligned} F_{1}^{3} & = 1.076 \times 10^{ - 12} ,F_{2}^{3} = 2.911 \times 10^{ - 12} ,F_{3}^{3} = 2.284 \times 10^{ - 12} ,F_{4}^{3} = 2.825 \times 10^{ - 12} \\ F_{5}^{3} & = 1.079 \times 10^{ - 12} ,F_{6}^{3} = 2.964 \times 10^{ - 12} ,F_{7}^{3} = 2.292 \times 10^{ - 12} ,F_{8}^{3} = 2.815 \times 10^{ - 12} . \\ \end{aligned}$$
(31)

We have eight features because they refer to paths AE, BF, CG, DH and vice versa. Then, the objective function for the same paths is determined applying Eq. (21):

$$f(e_{1}^{3} ,e_{2}^{3} , \ldots ,e_{8}^{3} ,F_{h}^{3} ) = \left\| {\left[ {\begin{array}{*{20}c} {e_{1}^{3} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & {e_{2}^{3} } & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {e_{3}^{3} } & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {e_{4}^{3} } & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {e_{5}^{3} } & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & {e_{6}^{3} } & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {e_{7}^{3} } & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & {e_{8}^{3} } \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {1.076} \\ {2.911} \\ {2.284} \\ {2.825} \\ {1.079} \\ {2.964} \\ {2.292} \\ {2.815} \\ \end{array} } \right\}10^{ - 12} - F_{h}^{3} \left\{ {\begin{array}{*{20}c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ \end{array} } \right\}} \right\|^{2} .$$
(32)
$$\begin{aligned} f(e_{1}^{3} ,e_{2}^{3} , \ldots ,e_{8}^{3} ,F_{h}^{3} ) = & \left( {1.076 \times 10^{ - 12} \times e_{1}^{3} - F_{h}^{3} } \right)^{2} + \left( {2.911 \times 10^{ - 12} \times e_{2}^{3} - F_{h}^{3} } \right)^{2} \\ & + \left( {2.284 \times 10^{ - 12} \times e_{3}^{3} - F_{h}^{3} } \right)^{2} + \left( {2.825 \times 10^{ - 12} \times e_{4}^{3} - F_{h}^{3} } \right)^{2} + \left( {1.079 \times 10^{ - 12} \times e_{5}^{3} - F_{h}^{3} } \right)^{2} \\ & + \left( {2.964 \times 10^{ - 12} \times e_{6}^{3} - F_{h}^{3} } \right)^{2} + \left( {2.292 \times 10^{ - 12} \times e_{7}^{3} - F_{h}^{3} } \right)^{2} + \left( {2.815 \times 10^{ - 12} \times e_{8}^{3} - F_{h}^{3} } \right)^{ + 2} \\ \end{aligned}$$
(33)

The objective function is subjected to the following constraints (Eq. 22b):

$$1.076 \times 10^{ - 12} \le F_{h}^{3} \le 2.964 \times 10^{ - 12} ,0.363 < e_{j}^{3} < 2.755.$$
(34)

To solve the function, we choose the following number of countries, empires and colonies:

$$N_{Country} = 50,N_{imp} = 5,N_{col} = N_{Country} - N_{imp} = 45.$$
(35)

Randomly, the following countries are produced:

$$\begin{aligned} Country_{1} & = \left[ {e_{1}^{3} ,e_{2}^{3} , \ldots ,e_{8}^{3} ,F_{h}^{3} } \right] \\ Country_{1} & = \left[ {2.924,1.188,2.936,2.908,1.894,2.571,1.155,1.757,2.81 \times 10^{ - 12} } \right] \\ Country_{2} & = \left[ {2.553,2.913,2.259,0.926,2.675,2.858,2.309,2.479,2.479 \times 10^{ - 12} } \right] \\ & . \\ & . \\ Country_{50} & = \left[ {1.693,2.259,1.218,2.368,0.918,1.445,0.949,1.058,2.631 \times 10^{ - 12} } \right]. \\ \end{aligned}$$
(36)

Next, the cost of the countries is obtained by means of the objective function in Eq. (33):

$$\begin{aligned} cost_{1} = & \left( {1.076 \times 10^{ - 12} \times 2.924 - 2.81 \times 10^{ - 12} } \right)^{2} + \left( {2.911 \times 10^{ - 12} \times 1.188 - 2.81 \times 10^{ - 12} } \right)^{2} \\ & + \left( {2.284 \times 10^{ - 12} \times 2.936 - 2.81 \times 10^{ - 12} } \right)^{2} + \left( {2.825 \times 10^{ - 12} \times 2.908 - 2.81 \times 10^{ - 12} } \right)^{2} \\ & + \left( {1.079 \times 10^{ - 12} \times 1.894 - 2.81 \times 10^{ - 12} } \right)^{2} + \left( {2.964 \times 10^{ - 12} \times 2.571 - 2.81 \times 10^{ - 12} } \right)^{2} \\ & + \left( {2.292 \times 10^{ - 12} \times 1.155 - 2.81 \times 10^{ - 12} } \right)^{2} + \left( {2.815 \times 10^{ - 12} \times 1.757 - 2.81 \times 10^{ - 12} } \right)^{2} = 73.4 \times 10^{ - 24} \\ cost_{2} = & 107.5 \times 10^{ - 24} \\ . & \\ . & \\ cost_{50} = & 38.5 \times 10^{ - 24} . \\ \end{aligned}$$
(37)

The countries with the minimum cost are selected as imperialists. As we choose to establish one imperialist every ten colonies, the five countries with the least cost are selected. Not shown here, for the analysis conducted in this study, Country 13 , Country 29, Country 23, Country 41, and Country 8 are selected as imperialist c 1 to c 5, respectively, and the remaining countries constitute the initial colonies. It should be emphasized that a new analysis may result in other countries for empires, because they are randomly generated. The cost of each imperialist is

$$\begin{aligned} c_{1} & = cost_{13} = 6.3 \times 10^{ - 24} ,c_{2} = 13.2 \times 10^{ - 24} ,c_{3} = 17.9 \times 10^{ - 24} \\ c_{4} & = 20.9 \times 10^{ - 24} ,c_{5} = 29.3 \times 10^{ - 24} . \\ \end{aligned}$$
(38)

The normalized cost is determined by applying Eq. (3):

$$\begin{aligned} C_{1} & = 6.3 \times 10^{ - 24} - 29.3 \times 10^{ - 24} = - 23 \times 10^{ - 24} \\ C_{2} & = - 16.1 \times 10^{ - 24} ,C_{3} = - 11.4 \times 10^{ - 24} ,C_{4} = - 8.4 \times 10^{ - 24} ,C_{5} = 0. \\ \end{aligned}$$
(39)

Equation (4) determines the normalized power of each imperialist, i.e.:

$$\begin{aligned} p_{1} & = \left| {\frac{{ - 23 \times 10^{24} }}{{ - 58.9 \times 10^{24} }}} \right| = 0.391 \\ p_{2} & = 0.273,p_{3} = 0.193,p_{4} = 0.143,p_{5} = 0.0. \\ \end{aligned}$$
(40)

Then, the initial number of colonies belonging to each empire is computed:

$$\begin{aligned} N.C._{1} & = round\left\{ {0.391 \times 45} \right\} = 18 \\ N.C._{2} & = 12,N.C._{3} = 9,N.C._{4} = 6,N.C._{5} = 0. \\ \end{aligned}$$
(41)

Thus, the colonies are randomly assigned to a certain empire based on the empire’s number of colonies N.C.To begin the assimilation process, the distances between the colonies and the imperialists are calculated to determine the new position of the colonies. For example, the distance l 1 between the Imperialist 1 and its first colony is

$$\begin{aligned} l_{1} & = Imperialist_{1} - Colony_{1} \\ l_{1} & = [ - 1.211, - 0.176, - 1.571, - 1.793, - 0.648, - 1.205, - 0.592, - 0.800, - 2.46 \times 10^{ - 14} ], \\ \end{aligned}$$
(42)

and Δl 1 is (see Eq. 6):

$$\begin{aligned} \Delta l_{1} & = \gamma \times l_{1} \times rand[01] = 2 \times l_{1} \times rand[01] \\ \Delta l_{1} & = [ - 1.994, - 0.244, - 0.996, - 3.407, - 0.045, - 1.057,0.452, - 1.225, - 3.23 \times 10^{ - 14} ]. \\ \end{aligned}$$
(43)

The constant γ must be greater than one. We choose γ = 2 by trial and error method. This number affects the number of iterations but it does not influence the final results. Therefore, the new position of the colony is

$$\begin{aligned} Colony_{1}^{new} & = Colony_{1} + \Delta l_{1} \\ Colony_{1}^{new} & = [0.931,0.945, 1.941, 0.499, 1.849, 1.513, 1.607, 0.532,2.77 \times 10^{ - 12} ]. \\ \end{aligned}$$
(44)

The assimilation process is iterated for each colony belonging to the Imperialist 1 and then repeated for the other imperialist-colonies systems. Once the assimilation process is completed, the cost of each colony is computed and then the total cost of an empire is determined using Eq. (7). For the example presented in this appendix, we have

$$\begin{aligned} T.C._{1} & = 6.3 \times 10^{ - 24} + 0.02\frac{{\sum\nolimits_{k = 1}^{18} {f\left( {Colony_{k} } \right)} }}{18} = 6.76 \times 10^{ - 24} \\ T.C._{2} & = 13.54 \times 10^{ - 24} ,T.C._{3} = 18.24 \times 10^{ - 24} ,T.C._{4} = 21.14 \times 10^{ - 24} ,T.C._{5} = 29.3 \times 10^{ - 24} . \\ \end{aligned}$$
(45)

For the competition process, the normalized total cost of an empire is computed

$$\begin{aligned} N.T.C._{1} & = 6.76 \times 10^{ - 24} - 29.3 \times 10^{ - 24} = - 22.54 \times 10^{ - 24} \\ N.T.C._{2} & = - 15.76 \times 10^{ - 24} ,N.T.C._{3} = - 11.06 \times 10^{ - 24} ,\\N.T.C._{4} &= - 8.16 \times 10^{ - 24} ,N.T.C._{5} = 0. \\ \end{aligned}$$
(46)

And the possession probability of the empires is calculated based on Eq. (9).

$$\begin{aligned} p_{{p_{1} }} & = \left| {\frac{{ - 22.54 \times 10^{ - 24} }}{{ - 57.52 \times 10^{ - 24} }}} \right| = 0.392 \\ p_{{p_{2} }} & = 0.274,p_{{p_{3} }} = 0.192,p_{{p_{4} }} = 0.142,p_{{p_{5} }} = 0. \\ \end{aligned}$$
(47)

Thus, the vector P (see Eq. 10) is

$${\mathbf{P}} = \left[ {0.392,0.274,0.192,0.142,0} \right].$$
(48)

Next, the vector R, which is formed by uniformly distributed random numbers comprised between 0 and 1, is generated:

$${\text{R}} = \left[ {0.876, 0.301,0.226,0.923,0.438} \right].$$
(49)

Finally, the vector D is computed as:

$${\text{D}} = {\text{P}} - {\text{R}} = \left[ { - 0.484, - 0.027, - 0.034, - 0.781, - 0.438} \right].$$
(50)

Referring to vector D, the weakest colony, i.e. the colony with the smallest number, of the Imperialist 4 is handed to the Imperialist 2. Then, the assimilation process is started again. Finally, the algorithm is terminated after 100 iteration at which the feature F 3 h  = 2.447 × 10−12 is found.

This process is repeated for other sensing paths to find the feature value that is associated with the pristine pipe. Once the other feature values are computed the application of the COA is terminated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, A., Rizzo, P. & Li, K. Ultrasonic imaging algorithm for the health monitoring of pipes. J Civil Struct Health Monit 7, 99–121 (2017). https://doi.org/10.1007/s13349-017-0214-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-017-0214-y

Keywords

Navigation