Skip to main content

Advertisement

Log in

Plant-derived exosome-like nanoparticles for microRNA delivery in cancer treatment

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Plant-derived exosome-like nanoparticles (PELNs) are natural nanocarriers and effective delivery systems for plant microRNAs (miRNAs). These PELN-carrying plant miRNAs can regulate mammalian genes across species, thereby increasing the diversity of miRNAs in mammals and exerting multi-target effects that play a crucial role in diseases, particularly cancer. PELNs demonstrate exceptional stability, biocompatibility, and targeting capabilities that protect and facilitate the up-take and cross-kingdom communication of plant miRNAs in mammals. Primarily ingested and absorbed within the gastrointestinal tract of mammals, PELNs preferentially act on the intestine to regulate intestinal homeostasis through functional miRNA activity. The oncogenesis and progression of cancer are closely associated with disruptions in intestinal barriers, ecological imbalances, as well as secondary changes, such as abnormal inflammatory reactions caused by them. Therefore, it is imperative to investigate whether PELNs exert their anticancer effects by regulating mammalian intestinal homeostasis and inflammation. This review aims to elucidate the intrinsic crosstalk relationships and mechanisms of PELNs-mediated miRNAs in maintaining intestinal homeostasis, regulating inflammation and cancer treatment. Furthermore, serving as exceptional drug delivery systems for miRNAs molecules, PELNs offer broad prospects for future applications, including new drug research and development along with drug carrier selection within targeted drug delivery approaches for cancer therapy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No new datasets were collected or generated for the purposes of this review article.

Abbreviations

PELNs:

Plant-derived exosome-like nanoparticles

miRNAs:

microRNAs

EVs:

extracellular vehicles

ELNs:

exosome-like nanoparticles

GDNs:

grapefruit-derived nanovesicles

LPS:

lipopolysaccharide

HCC:

hepatocellular carcinoma

IBD:

inflammatory bowel disease

IL:

interleukin

GELNs:

ginger derived exosome-like nanoparticles

MVBs:

multivesicular bodies

PA:

phosphatidic acid

CLDENs:

Catharanthus roseus (L.) Don leaves-derived exosome-like nanovesicles

bNPs:

rice bran-derived nanoparticles

EPDELNs:

edible plant-derived exosome-like nanoparticles

LGG:

Lactobacillus rhamnosus

TSD-27:

Ruminococcaceae sp.

OATP2B1:

organic anion–transporting peptide 2B1

CELNs:

nanoparticles extracted from coconut water

NF-κB:

nuclear factor-κB

NF:

tumor necrosis factor

TGF:

tumor growth transforming factor

GSK-3β:

glycogen synthase kinase-3β

Tnfrsf1a:

TNF receptor superfamily member 1a

NLR:

nucleotide-binding domain and leucine-rich repeat

NLRP3:

Recombinant NLR Family, Pyrin Domain Containing Protein 3

DSS:

dextran sulfate sodium

5-FU:

5-Fluorouracil

GENs:

exosome-like nanoparticles derived from ginseng

GNVs:

grapefruit-derived nanovectors

pGNVs:

GNV-based nanovector hybridized with polyethylenimine

FA:

folic acid

MHCI:

major histocompatibility complex I

CAC:

colitis-associated cancer

TFENs:

exosome-like nanoparticles from tea flowers

ROS:

reactive oxygen species

GNVs-FA:

GNVs binding FA

HRED:

heparin-cRGD-EVs-doxorubicin

PTX:

paclitaxel

siRNA:

short interfering RNA

AELNs:

acerola exosome-like nanoparticles

BMSCs:

bone marrow-derived mesenchymal stem cells

References

  1. Carter JV, Galbraith NJ, Yang D, Burton JF, Walker SP, Galandiuk S. Blood-Based MicroRNAs as Biomarkers for the Diagnosis of Colorectal Cancer: A Systematic Review and Meta-Analysis. Br J Cancer. 2017;116(6):762–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Peng Y, Croce CM. The Role of Micrornas in Human Cancer. Signal Transduct Target Ther. 2016;1:15004.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kalogianni DP, Kalligosfyri PM, Kyriakou IK, Christopoulos TK. Advances in MicroRNA Analysis. Anal Bioanal Chem. 2018;410(3):695–713.

    Article  CAS  PubMed  Google Scholar 

  4. Flynt AS, Lai EC. Biological Principles of Microrna-Mediated Regulation: Shared Themes Amid Diversity. Nat Rev Genet. 2008;9(11):831–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bartel DP. MicroRNAs: Target Recognition and Regulatory Functions. Cell. 2009;136(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, et al. Exogenous Plant MIR168a Specifically Targets Mammalian LDLRAP1: Evidence of cRoss-Kingdom Regulation by MicroRNA. Cell Res. 2012;22(1):107–26.

    Article  CAS  PubMed  Google Scholar 

  7. Dávalos A, Pinilla L, López de Las Hazas MC, Pinto-Hernández P, Barbé F, Iglesias-Gutiérrez E, et al. Dietary MicroRNAs and Cancer: A New Therapeutic Approach? Semin Cancer Biol. 2021;73:19–29.

    Article  PubMed  Google Scholar 

  8. Del Pozo-Acebo L, López de Las Hazas MC, Margollés A, Dávalos A, García-Ruiz A. Eating MicroRNAs: Pharmacological Opportunities for Cross-Kingdom Regulation and Implications in Host Gene and Gut Microbiota Modulation. Br J Pharmacol. 2021;178(11):2218–45.

    Article  PubMed  Google Scholar 

  9. Chin AR, Fong MY, Somlo G, Wu J, Swiderski P, Wu X, et al. Cross-kingdom Inhibition of Breast Cancer Growth by Plant MiR159. Cell Res. 2016;26(2):217–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim J, Li S, Zhang S, Wang J. Plant-Derived Exosome-Like Nanoparticles and their Therapeutic Activities. Asian J Pharm Sci. 2022;17(1):53–69.

    Article  PubMed  Google Scholar 

  11. Anusha R, Priya S. Dietary Exosome-Like Nanoparticles: an Updated Review on their Pharmacological and Drug Delivery Applications. Mol Nutr Food Res. 2022;66(14):e2200142.

    Article  PubMed  Google Scholar 

  12. Urzì O, Gasparro R, Ganji NR, Alessandro R, Raimondo S. Plant-RNA in Extracellular Vesicles: The Secret of Cross-Kingdom Communication. Membr (Basel). 2022;12(4):352.

    Google Scholar 

  13. Record M. Exosome-Like Nanoparticles from Food: Protective Nanoshuttles for Bioactive Cargo. Mol Ther. 2013;21(7):1294–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Halperin W, Jensen WA. Ultrastructural Changes During Growth and Embryogenesis in Carrot Cell Cultures. J Ultrastruct Res. 1967;18(3):428–43.

    Article  CAS  PubMed  Google Scholar 

  15. Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, et al. Grape Exosome-Like Nanoparticles Induce Intestinal Stem Cells and Protect Mice from DSS-Induced Colitis. Mol Ther. 2013;21(7):1345–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Y, Zhang Y, Dong P, An R, Xue C, Ge Y, et al. Digestion of Nucleic Acids Starts in the Stomach. Sci Rep. 2015;5:11936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qin X, Wang X, Xu K, Zhang Y, Ren X, Qi B, et al. Digestion of Plant Dietary miRNAs Starts in the Mouth Under the Protection of Coingested Food Components and Plant-Derived Exosome-like nanoparticles. J Agric Food Chem. 2022;70(14):4316–27.

    Article  CAS  PubMed  Google Scholar 

  18. Wang B, Zhuang X, Deng ZB, Jiang H, Mu J, Wang Q, et al. Targeted Drug Delivery to Intestinal Macrophages by Bioactive Nanovesicles Released from Grapefruit. Mol Ther. 2014;22(3):522–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mu J, Zhuang X, Wang Q, Jiang H, Deng ZB, Wang B, et al. Interspecies Communication between Plant and Mouse Gut Host Cells Through Edible Plant Derived Exosome-Like Nanoparticles. Mol Nutr Food Res. 2014;58(7):1561–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sundaram GM. Dietary Non-Coding RNAs from Plants: Fairy Tale or Treasure? Noncoding RNA Res. 2019;4(2):63–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Link J, Thon C, Schanze D, Steponaitiene R, Kupcinskas J, Zenker M, et al. Food-Derived Xeno-MicroRNAs: Influence of Diet and Detectability in Gastrointestinal Tract-Proof-of-Principle Study. Mol Nutr Food Res. 2019;63(2):e1800076.

    Article  PubMed  Google Scholar 

  22. Zhou F, Paz HA, Sadri M, Cui J, Kachman SD, Fernando SC, et al. Dietary Bovine Milk Exosomes Elicit Changes in Bacterial Communities in C57BL/6 mice. Am J Physiol Gastrointest Liver Physiol. 2019;317(5):G618–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fujita D, Arai T, Komori H, Shirasaki Y, Wakayama T, Nakanishi T, et al. Apple-Derived Nanoparticles Modulate Expression of Organic-Anion-Transporting Polypeptide (OATP) 2B1 in Caco-2 Cells. Mol Pharm. 2018;15(12):5772–80.

    Article  CAS  PubMed  Google Scholar 

  24. Komori H, Fujita D, Shirasaki Y, Zhu Q, Iwamoto Y, Nakanishi T, et al. MicroRNAs in Apple-Derived Nanoparticles Modulate Intestinal Expression of Organic Anion-transporting Peptide 2B1/SLCO2B1 in Caco-2 Cells. Drug Metab Dispos. 2021;49(9):803–9.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang M, Xiao B, Wang H, Han MK, Zhang Z, Viennois E, et al. Edible Ginger-Derived Nano-Lipids Loaded with Doxorubicin as a Novel Drug-delivery Approach for Colon cancer Therapy. Mol Ther. 2016;24(10):1783–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang X, Zhang M, Flores SRL, Woloshun RR, Yang C, Yin L, et al. Oral Gavage of Ginger Nanoparticle-Derived Lipid Vectors Carrying Dmt1 siRNA Blunts Iron Loading in Murine Hereditary Hemochromatosis. Mol Ther. 2019;27(3):493–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chassaing B, Gewirtz AT. Gut Microbiota, Low-Grade Inflammation, and Metabolic Syndrome. Toxicol Pathol. 2014;42(1):49–53.

    Article  PubMed  Google Scholar 

  28. Mei S, Deng Z, Chen Y, Ning D, Guo Y, Fan X, et al. Dysbiosis: The First Hit for Digestive System Cancer. Front Physiol. 2022;13:1040991.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Achiwa K, Ishigami M, Ishizu Y, Kuzuya T, Honda T, Hayashi K, et al. DSS Colitis Promotes Tumorigenesis and Fibrogenesis in a Choline-Deficient High-Fat Diet-Induced NASH Mouse Model. Biochem Biophys Res Commun. 2016;470(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  30. Gritzapis AD, Voutsas IF, Lekka E, Tsavaris N, Missitzis I, Sotiropoulou P, et al. Identification of a Novel Immunogenic HLA-A*0201-Binding Epitope of HER-2/neu with Potent Antitumor Properties. J Immunol. 2008;181(1):146–54.

    Article  CAS  PubMed  Google Scholar 

  31. Cai J, Sun L, Gonzalez FJ. Gut Microbiota-Derived Bile Acids in Intestinal Immunity, Inflammation, and Tumorigenesis. Cell Host Microbe. 2022;30(3):289–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Seksik P. [Gut microbiota and IBD]. Gastroenterol Clin Biol. 2010;34(Suppl 1):S44–51.

    Article  PubMed  Google Scholar 

  33. Liu Z, Cao AT, Cong Y. Microbiota Regulation of Inflammatory Bowel Disease and Colorectal Cancer. Semin Cancer Biol. 2013; 23(6 Pt B):543– 52.

  34. Buchta Rosean C, Bostic RR, Ferey JCM, Feng TY, Azar FN, Tung KS, et al. Preexisting Commensal Dysbiosis is a Host-Intrinsic Regulator of Tissue Inflammation and Tumor Cell Dissemination in Hormone Receptor-Positive Breast Cancer. Cancer Res. 2019;79(14):3662–75.

    Article  PubMed  Google Scholar 

  35. Li Q, Ma L, Shen S, Guo Y, Cao Q, Cai X, et al. Intestinal Dysbacteriosis-Induced IL-25 Promotes Development of HCC via Alternative Activation of Macrophages in Tumor Microenvironment. J Exp Clin Cancer Res. 2019;38(1):303.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tian Y, Cai L, Tian Y, Tu Y, Qiu H, Xie G, et al. miR156a Mimic Represses the Epithelial-Mesenchymal transition of Human Nasopharyngeal Cancer Cells by Targeting Junctional Adhesion Molecule A. PLoS ONE. 2016;11(6):e0157686.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu C, Xu M, Yan L, Wang Y, Zhou Z, Wang S, et al. Honeysuckle-derived MicroRNA2911 Inhibits Tumor Growth by Targeting TGF-β1. Chin Med. 2021;16(1):49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marzano F, Caratozzolo MF, Consiglio A, Licciulli F, Liuni S, Sbisà E, et al. Plant miRNAs Reduce Cancer Cell Proliferation by Targeting MALAT1 and NEAT1: a Beneficial Cross-kingdom Interaction. Front Genet. 2020;11:552490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feng J, Xiu Q, Huang Y, Troyer Z, Li B, Zheng L. Plant-Derived Vesicle-Like Nanoparticles as Promising Biotherapeutic Tools: Present and Future. Adv Mater 2023:e2207826.

  40. Zhang M, Viennois E, Xu C, Merlin D. Plant Derived Edible Nanoparticles as a New Therapeutic Approach Against Diseases. Tissue Barriers. 2016;4(2):e1134415.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xu H, Yang Y. Nanoparticles Derived from Plant Proteins for Controlled Release and Targeted Delivery of Therapeutics. Nanomed (Lond). 2015;10(13):2001–4.

    Article  CAS  Google Scholar 

  42. Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, et al. Methylation as a Crucial Step in Plant microRNA Biogenesis. Science. 2005;307(5711):932–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li J, Yang Z, Yu B, Liu J, Chen X. Methylation Protects miRNAs and siRNAs from a 3’-End Uridylation Activity in Arabidopsis. Curr Biol. 2005;15(16):1501–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liang H, Jiao Z, Rong W, Qu S, Liao Z, Sun X, et al. 3’-Terminal 2’-O-methylation of Lung Cancer mir-21-5p Enhances its Stability and Association with Argonaute 2. Nucleic Acids Res. 2020;48(13):7027–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Moran Y, Agron M, Praher D, Technau U. The Evolutionary Origin of Plant and Animal microRNAs. Nat Ecol Evol. 2017;1(3):27.

    Article  PubMed  Google Scholar 

  46. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, et al. Widespread Translational Inhibition by Plant miRNAs and siRNAs. Science. 2008;320(5880):1185–90.

    Article  CAS  PubMed  Google Scholar 

  47. Iwakawa HO, Tomari Y. Molecular Insights into microRNA-Mediated Translational Repression in Plants. Mol Cell. 2013;52(4):591–601.

    Article  CAS  PubMed  Google Scholar 

  48. An Q, Hückelhoven R, Kogel KH, van Bel AJ. Multivesicular Bodies Participate in a Cell Wall-Associated Defence Response in Barley Leaves Attacked by the Pathogenic Powdery Mildew Fungus. Cell Microbiol. 2006;8(6):1009–19.

    Article  CAS  PubMed  Google Scholar 

  49. Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, et al. SNARE-Protein-Mediated Disease Resistance at the Plant Cell Wall. Nature. 2003;425(6961):973–7.

    Article  CAS  PubMed  Google Scholar 

  50. Meyer D, Pajonk S, Micali C, O’Connell R, Schulze-Lefert P. Extracellular Transport and Integration of Plant Secretory Proteins into Pathogen-Induced Cell Wall Compartments. Plant J. 2009;57(6):986–99.

    Article  CAS  PubMed  Google Scholar 

  51. Regente M, Corti-Monzón G, Maldonado AM, Pinedo M, Jorrín J, de la Canal L. Vesicular Fractions of Sunflower Apoplastic Fluids are Associated with Potential Exosome Marker Proteins. FEBS Lett. 2009;583(20):3363–6.

    Article  CAS  PubMed  Google Scholar 

  52. Sundaram K, Miller DP, Kumar A, Teng Y, Sayed M, Mu J, et al. Plant-Derived Exosomal Nanoparticles Inhibit Pathogenicity of Porphyromonas Gingivalis. iScience. 2019;21:308–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant Exosome-Like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms. Mol Ther. 2021;29(1):13–31.

    Article  CAS  PubMed  Google Scholar 

  54. Liu Y, Ren C, Zhan R, Cao Y, Ren Y, Zou L, et al. Exploring the Potential of Plant-Derived Exosome-Like Nanovesicle as Functional Food Components for Human Health: a review. Foods. 2024;13(5):712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ou X, Wang H, Tie H, Liao J, Luo Y, Huang W, et al. Novel Plant-Derived Exosome-Like Nanovesicles from Catharanthus Roseus: Preparation, Characterization, and Immunostimulatory Effect Via TNF-α/NF-κB/PU.1 Axis. J Nanobiotechnol. 2023;21(1):160.

    Article  CAS  Google Scholar 

  56. Sasaki D, Suzuki H, Kusamori K, Itakura S, Todo H, Nishikawa M. Development of Rice Bran-Derived Nanoparticles with Excellent Anti-Cancer Activity and their Application for Peritoneal Dissemination. J Nanobiotechnol. 2024;22(1):114.

    Article  CAS  Google Scholar 

  57. Madhan S, Dhar R, Devi A. Plant-Derived Exosomes: A Green Approach for Cancer Drug Delivery. J Mater Chem B. 2024;12(9):2236–52.

    Article  CAS  PubMed  Google Scholar 

  58. Xiao J, Feng S, Wang X, Long K, Luo Y, Wang Y, et al. Identification of Exosome-Like Nanoparticle-Derived microRNAs from 11 Edible Fruits and Vegetables. PeerJ. 2018;6:e5186.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, et al. Plant-Derived Exosomal Micrornas Shape the Gut Microbiota. Cell Host Microbe. 2018;24(5):637–e528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Colling M, Wolfram G. [Effect of cooking on the purine content of foods]. Z Ernahrungswiss. 1987;26(4):214–8.

    Article  CAS  PubMed  Google Scholar 

  61. Liang H, Zhang S, Fu Z, Wang Y, Wang N, Liu Y, et al. Effective Detection and Quantification of Dietetically Absorbed Plant Micrornas in Human Plasma. J Nutr Biochem. 2015;26(5):505–12.

    Article  CAS  PubMed  Google Scholar 

  62. Philip A, Ferro VA, Tate RJ. Determination of the Potential Bioavailability of Plant Micrornas Using a Simulated Human Digestion Process. Mol Nutr Food Res. 2015;59(10):1962–72.

    Article  CAS  PubMed  Google Scholar 

  63. Luo Y, Wang P, Wang X, Wang Y, Mu Z, Li Q, et al. Detection of Dietetically Absorbed Maize-Derived Micrornas in Pigs. Sci Rep. 2017;7(1):645.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liang G, Zhu Y, Sun B, Shao Y, Jing A, Wang J, et al. Assessing the Survival of Exogenous Plant microRNA in Mice. Food Sci Nutr. 2014;2(4):380–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou Z, Li X, Liu J, Dong L, Chen Q, Liu J, et al. Honeysuckle-Encoded Atypical microRNA2911 Directly Targets Influenza a Viruses. Cell Res. 2015;25(1):39–49.

    Article  CAS  PubMed  Google Scholar 

  66. Xie W, Melzig MF. The Stability of Medicinal Plant microRNAs in the Herb Preparation Process. Molecules. 2018;23(4):919.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Li X, Liang Z, Du J, Wang Z, Mei S, Li Z, et al. Herbal Decoctosome is a Novel form of Medicine. Sci China Life Sci. 2019;62(3):333–48.

    Article  CAS  PubMed  Google Scholar 

  68. Chen X, Zhou Y, Yu J. Exosome-Like Nanoparticles from Ginger rhizomes Inhibited NLRP3 Inflammasome Activation. Mol Pharm. 2019;16(6):2690–9.

    Article  CAS  PubMed  Google Scholar 

  69. Ito Y, Taniguchi K, Kuranaga Y, Eid N, Inomata Y, Lee SW, et al. Uptake of MicroRNAs from Exosome-Like Nanovesicles of Edible Plant Juice by Rat Enterocytes. Int J Mol Sci. 2021;22(7):3749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yin L, Yan L, Yu Q, Wang J, Liu C, Wang L, et al. Characterization of the MicroRNA Profile of Ginger Exosome-like Nanoparticles and their anti-inflammatory effects in Intestinal Caco-2 cells. J Agric Food Chem. 2022;70(15):4725–34.

    Article  CAS  PubMed  Google Scholar 

  71. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced Extinctions in the Gut Microbiota Compound Over Generations. Nature. 2016;529(7585):212–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Díez-Sainz E, Lorente-Cebrián S, Aranaz P, Riezu-Boj JI, Martínez JA, Milagro FI. Potential Mechanisms Linking Food-Derived MicroRNAs, Gut Microbiota and Intestinal Barrier functions in the Context of Nutrition and Human Health. Front Nutr. 2021;8:586564.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Goga A, Yagabasan B, Herrmanns K, Godbersen S, Silva PN, Denzler R, et al. miR-802 Regulates Paneth Cell Function and Enterocyte Differentiation in the Mouse Small Intestine. Nat Commun. 2021;12(1):3339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhu J, Fan Y, Yang S, Qin M, Chen X, Luo J, et al. Oral Delivery of miR-146a-5p Overexpression Plasmid-Loaded Pickering Double Emulsion Modulates Intestinal Inflammation and the Gut Microbe. Int J Biol Macromol. 2024;261(Pt 2):129733.

    Article  CAS  PubMed  Google Scholar 

  75. Xu Q, Qin X, Zhang Y, Xu K, Li Y, Li Y, et al. Plant miRNA bol-miR159 Regulates Gut Microbiota Composition in Mice: In Vivo Evidence of the Crosstalk Between Plant miRNAs and Intestinal Microbes. J Agric Food Chem. 2023;71(43):16160–73.

    Article  CAS  PubMed  Google Scholar 

  76. Xu Q, Wang J, Zhang Y, Li Y, Qin X, Xin Y, et al. Atypical plant miRNA Cal-miR2911: Robust Stability against Food Digestion and specific promoting effect on Bifidobacterium in mice. J Agric Food Chem. 2024;72(9):4801–13.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, et al. Edible Ginger-Derived Nanoparticles: A Novel Therapeutic Approach for the Prevention and Treatment of Inflammatory Bowel Disease and Colitis-Associated Cancer. Biomaterials. 2016;101:321–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li M, Chen T, Wang R, Luo JY, He JJ, Ye RS, et al. Plant MIR156 Regulates Intestinal Growth in Mammals by Targeting the Wnt/β-catenin Pathway. Am J Physiol Cell Physiol. 2019;317(3):C434–48.

    Article  CAS  PubMed  Google Scholar 

  79. Li M, Chen T, He JJ, Wu JH, Luo JY, Ye RS, et al. Plant MIR167e-5p inhibits Enterocyte Proliferation by Targeting β-Catenin. Cells. 2019;8(11):1385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yu S, Zhao Z, Xu X, Li M, Li P. Characterization of Three Different Types of Extracellular Vesicles and their Impact on Bacterial Growth. Food Chem. 2019;272:372–8.

    Article  CAS  PubMed  Google Scholar 

  81. Liu Y, Tan ML, Zhu WJ, Cao YN, Peng LX, Yan ZY, et al. In Vitro Effects of Tartary Buckwheat-Derived nanovesicles on Gut Microbiota. J Agric Food Chem. 2022;70(8):2616–29.

    Article  CAS  PubMed  Google Scholar 

  82. Qiu FS, Wang JF, Guo MY, Li XJ, Shi CY, Wu F, et al. Rgl-exomiR-7972, A Novel Plant Exosomal Microrna Derived From Fresh Rehmanniae Radix, Ameliorated Lipopolysaccharide-Induced Acute Lung Injury and Gut Dysbiosis. Biomed Pharmacother. 2023;165:115007.

    Article  CAS  PubMed  Google Scholar 

  83. Teng Y, Xu F, Zhang X, Mu J, Sayed M, Hu X, et al. Plant-derived Exosomal microRNAs Inhibit Lung Inflammation Induced by Exosomes SARS-CoV-2 Nsp12. Mol Ther. 2021;29(8):2424–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ishida T, Kawada K, Jobu K, Morisawa S, Kawazoe T, Nishimura S, et al. Exosome-like Nanoparticles Derived from Allium Tuberosum Prevent Neuroinflammation in Microglia-Like Cells. J Pharm Pharmacol. 2023;75(10):1322–31.

    Article  PubMed  Google Scholar 

  85. Yu WY, Cai W, Ying HZ, Zhang WY, Zhang HH, Yu CH. Exogenous Plant Gma-miR-159a, Identified by miRNA Library Functional Screening, Ameliorated Hepatic Stellate Cell Activation and Inflammation via inhibiting GSK-3β-Mediated pathways. J Inflamm Res. 2021;14:2157–72.

    Article  PubMed  PubMed Central  Google Scholar 

  86. De Robertis M, Sarra A, D’Oria V, Mura F, Bordi F, Postorino P, et al. Blueberry-Derived Exosome-Like Nanoparticles Counter the response to TNF-α-Induced Change on Gene expression in EA.hy926 cells. Biomolecules. 2020;10(5):742.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Aquilano K, Ceci V, Gismondi A, De Stefano S, Iacovelli F, Faraonio R, et al. Adipocyte metabolism is improved by TNF receptor-targeting small RNAs Identified from Dried Nuts. Commun Biol. 2019;2:317.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ma C, Liu K, Wang F, Fei X, Niu C, Li T, et al. Neutrophil Membrane-Engineered Panax Ginseng Root-Derived Exosomes Loaded miRNA 182-5p Targets NOX4/Drp-1/NLRP3 Signal Pathway to Alleviate Acute Lung Injury in sepsis: Experimental Studies. Int J Surg. 2024;110(1):72–86.

    Article  PubMed  Google Scholar 

  89. Wang X, Liu Y, Dong X, Duan T, Wang C, Wang L, et al. Peu-MIR2916-p3-Enriched Garlic Exosomes Ameliorate Murine Colitis by Reshaping Gut Microbiota, Especially by Boosting The Anti-Colitic Bacteroides Thetaiotaomicron. Pharmacol Res. 2024;200:107071.

    Article  CAS  PubMed  Google Scholar 

  90. Kantarcıoğlu M, Yıldırım G, Akpınar Oktar P, Yanbakan S, Özer ZB, Yurtsever Sarıca D, et al. Coffee-Derived Exosome-Like nanoparticles: are they the Secret heroes? Turk J Gastroenterol. 2023;34(2):161–9.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zhuang X, Teng Y, Samykutty A, Mu J, Deng Z, Zhang L, et al. Grapefruit-derived Nanovectors Delivering Therapeutic miR17 through an Intranasal Route Inhibit Brain Tumor Progression. Mol Ther. 2016;24(1):96–105.

    Article  CAS  PubMed  Google Scholar 

  92. Teng Y, Mu J, Hu X, Samykutty A, Zhuang X, Deng Z, et al. Grapefruit-Derived Nanovectors Deliver miR-18a for Treatment of Liver Metastasis of Colon Cancer by Induction of M1 Macrophages. Oncotarget. 2016;7(18):25683–97.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kim J, Zhu Y, Chen S, Wang D, Zhang S, Xia J, et al. Anti-Glioma Effect of Ginseng-Derived Exosomes-Like Nanoparticles by Active Blood-Brain-Barrier Penetration and Tumor Microenvironment Modulation. J Nanobiotechnol. 2023;21(1):253.

    Article  CAS  Google Scholar 

  94. Zhao Z, Yu S, Li M, Gui X, Li P. Isolation of Exosome-Like Nanoparticles and Analysis of MicroRNAs derived from Coconut Water based on small RNA high-throughput sequencing. J Agric Food Chem. 2018;66(11):2749–57.

    Article  CAS  PubMed  Google Scholar 

  95. Yang M, Luo Q, Chen X, Chen F. Bitter Melon Derived Extracellular Vesicles Enhance The Therapeutic Effects and Reduce the Drug Resistance of 5-fluorouracil on Oral Squamous Cell Carcinoma. J Nanobiotechnol. 2021;19(1):259.

    Article  Google Scholar 

  96. Yan G, Xiao Q, Zhao J, Chen H, Xu Y, Tan M, et al. Brucea Javanica Derived Exosome-Like Nanovesicles Deliver Mirnas For Cancer Therapy. J Control Release. 2024;367:425–40.

    Article  CAS  PubMed  Google Scholar 

  97. Yi Q, Xu Z, Thakur A, Zhang K, Liang Q, Liu Y, et al. Current understanding of Plant-Derived Exosome-Like Nanoparticles in Regulating the Inflammatory Response and Immune System Microenvironment. Pharmacol Res. 2023;190:106733.

    Article  CAS  PubMed  Google Scholar 

  98. Trentini M, Zanotti F, Tiengo E, Camponogara F, Degasperi M, Licastro D, et al. An Apple a Day keeps the doctor away: potential role of miRNA 146 on Macrophages Treated with Exosomes Derived from apples. Biomedicines. 2022;10(2):415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li DF, Tang Q, Yang MF, Xu HM, Zhu MZ, Zhang Y, et al. Plant-Derived Exosomal Nanoparticles: Potential Therapeutic For Inflammatory Bowel Disease. Nanoscale Adv. 2023;5(14):3575–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen X, Liu B, Li X, An TT, Zhou Y, Li G, et al. Identification of Anti-Inflammatory Vesicle-Like Nanoparticles in Honey. J Extracell Vesicles. 2021;10(4):e12069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim J, Zhang S, Zhu Y, Wang R, Wang J. Amelioration of Colitis Progression by Ginseng-Derived Exosome-Like Nanoparticles Through Suppression of Inflammatory Cytokines. J Ginseng Res. 2023;47(5):627–37.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zhu MZ, Xu HM, Liang YJ, Xu J, Yue NN, Zhang Y, et al. Edible Exosome-Like Nanoparticles from Portulaca Oleracea L Mitigate DSS-induced Colitis Via Facilitating Double-Positive CD4(+)CD8(+)T Cells Expansion. J Nanobiotechnol. 2023;21(1):309.

    Article  CAS  Google Scholar 

  103. Sriwastva MK, Deng ZB, Wang B, Teng Y, Kumar A, Sundaram K, et al. Exosome-like nanoparticles from Mulberry bark prevent DSS-induced colitis via the AhR/COPS8 pathway. EMBO Rep. 2022;23(3):e53365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the Seventh Hallmark Of Cancer: Links to Genetic Instability. Carcinogenesis. 2009;30(7):1073–81.

    Article  CAS  PubMed  Google Scholar 

  105. Moses C, Garcia-Bloj B, Harvey AR, Blancafort P. Hallmarks of cancer: the CRISPR generation. Eur J Cancer. 2018;93:10–8.

    Article  CAS  PubMed  Google Scholar 

  106. Francescone R, Hou V, Grivennikov SI. Microbiome, Inflammation, and Cancer. Cancer J. 2014;20(3):181–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Singh N, Baby D, Rajguru JP, Patil PB, Thakkannavar SS, Pujari VB. Inflammation and cancer. Ann Afr Med. 2019;18(3):121–6.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Takagi K, Takayama T, Nagase H, Moriguchi M, Wang X, Hirayanagi K, et al. High TSC22D3 and low GBP1 Expression in the Liver is a Risk Factor For Early Recurrence Of Hepatocellular Carcinoma. Exp Ther Med. 2011;2(3):425–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zu M, Xie D, Canup BSB, Chen N, Wang Y, Sun R, et al. Green’ Nanotherapeutics from Tea Leaves for Orally Targeted Prevention and Alleviation Of Colon Diseases. Biomaterials. 2021;279:121178.

    Article  CAS  PubMed  Google Scholar 

  110. Chen Q, Li Q, Liang Y, Zu M, Chen N, Canup BSB, et al. Natural Exosome-Like Nanovesicles from Edible Tea Flowers Suppress Metastatic Breast Cancer Via Ros Generation And Microbiota Modulation. Acta Pharm Sin B. 2022;12(2):907–23.

    Article  PubMed  Google Scholar 

  111. Chen Q, Zu M, Gong H, Ma Y, Sun J, Ran S, et al. Tea Leaf-Derived Exosome-Like Nanotherapeutics Retard Breast Tumor Growth by Pro-Apoptosis and Microbiota Modulation. J Nanobiotechnol. 2023;21(1):6.

    Article  CAS  Google Scholar 

  112. Gao C, Zhou Y, Chen Z, Li H, Xiao Y, Hao W, et al. Turmeric-derived Nanovesicles As Novel Nanobiologics For Targeted Therapy Of Ulcerative Colitis. Theranostics. 2022;12(12):5596–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wu M, Ouyang Y, Wang Z, Zhang R, Huang PH, Chen C, et al. Isolation of Exosomes from Whole Blood by Integrating Acoustics and Microfluidics. Proc Natl Acad Sci U S A. 2017;114(40):10584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hock SC, Ying YM, Wah CL. A Review of the Current Scientific and Regulatory Status of Nanomedicines and the Challenges Ahead. PDA J Pharm Sci Technol. 2011;65(2):177–95.

    CAS  PubMed  Google Scholar 

  115. Juliano R. Nanomedicine: Is the Wave Cresting? Nat Rev Drug Discov. 2013;12(3):171–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Poonia N, Lather V, Pandita D. Mesoporous Silica Nanoparticles: A Smart Nanosystem For Management Of Breast Cancer. Drug Discov Today. 2018;23(2):315–32.

    Article  CAS  PubMed  Google Scholar 

  117. Panagi M, Voutouri C, Mpekris F, Papageorgis P, Martin MR, Martin JD, et al. TGF-β Inhibition Combined With Cytotoxic Nanomedicine Normalizes Triple Negative Breast Cancer Microenvironment Towards Anti-Tumor Immunity. Theranostics. 2020;10(4):1910–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Di Gioia S, Hossain MN, Conese M. Biological Properties and Therapeutic effects of Plant-Derived Nanovesicles. Open Med (Wars). 2020;15(1):1096–122.

    Article  PubMed  Google Scholar 

  119. Zhu H, He W. Ginger: A Representative Material of Herb-Derived Exosome-Like Nanoparticles. Front Nutr. 2023;10:1223349.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Lian MQ, Chng WH, Liang J, Yeo HQ, Lee CK, Belaid M, et al. Plant-Derived Extracellular Vesicles: Recent Advancements and Current Challenges on their use for Biomedical Applications. J Extracell Vesicles. 2022;11(12):e12283.

    Article  PubMed  Google Scholar 

  121. Xie X, Wu H, Li M, Chen X, Xu X, Ni W, et al. Progress in the Application of Exosomes As Therapeutic Vectors in Tumor-Targeted Therapy. Cytotherapy. 2019;21(5):509–24.

    Article  CAS  PubMed  Google Scholar 

  122. Wang Y, Wei Y, Liao H, Fu H, Yang X, Xiang Q, et al. Plant exosome-like nanoparticles as Biological shuttles for Transdermal Drug Delivery. Bioeng (Basel). 2023;10(1):104.

    Google Scholar 

  123. Jain N, Pandey M, Sharma P, Gupta G, Gorain B, Dua K. Recent Developments in Plant-Derived Edible Nanoparticles As Therapeutic Nanomedicines. J Food Biochem. 2022;46(12):e14479.

    Article  PubMed  Google Scholar 

  124. Barzin M, Bagheri AM, Ohadi M, Abhaji AM, Salarpour S, Dehghannoudeh G. Application of Plant-Derived Exosome-Like Nanoparticles In Drug Delivery. Pharm Dev Technol. 2023;28(5):383–402.

    Article  CAS  PubMed  Google Scholar 

  125. Yang C, Zhang M, Merlin D. Advances in Plant-Derived Edible Nanoparticle-Based Lipid Nano-Drug Delivery Systems As Therapeutic Nanomedicines. J Mater Chem B. 2018;6(9):1312–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lu X, Han Q, Chen J, Wu T, Cheng Y, Li F, et al. Celery (Apium graveolens L.) Exosome-like nanovesicles as a New-Generation Chemotherapy Drug Delivery platform against Tumor Proliferation. J Agric Food Chem. 2023;71(22):8413–24.

    Article  CAS  PubMed  Google Scholar 

  127. Li Z, Wang H, Yin H, Bennett C, Zhang HG, Guo P. Arrowtail RNA for Ligand Display on Ginger Exosome-like nanovesicles to systemic deliver siRNA for Cancer suppression. Sci Rep. 2018;8(1):14644.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Raimondo S, Naselli F, Fontana S, Monteleone F, Lo Dico A, Saieva L, et al. Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death. Oncotarget. 2015;6(23):19514–27.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Smyth T, Kullberg M, Malik N, Smith-Jones P, Graner MW, Anchordoquy TJ. Biodistribution and Delivery Efficiency of Unmodified Tumor-Derived Exosomes. J Control Release. 2015;199:145–55.

    Article  CAS  PubMed  Google Scholar 

  130. Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome Mimetics: A Novel Class of Drug Delivery Systems. Int J Nanomed. 2012;7:1525–41.

    CAS  Google Scholar 

  131. Yang LY, Li CQ, Zhang YL, Ma MW, Cheng W, Zhang GJ. Emerging drug delivery vectors: Engineering of Plant-Derived Nanovesicles And Their Applications in Biomedicine. Int J Nanomed. 2024;19:2591–610.

    Article  Google Scholar 

  132. Wang Q, Zhuang X, Mu J, Deng ZB, Jiang H, Zhang L, et al. Delivery of Therapeutic Agents By Nanoparticles Made of Grapefruit-Derived Lipids. Nat Commun. 2013;4:1867.

    Article  PubMed  Google Scholar 

  133. Wang Q, Ren Y, Mu J, Egilmez NK, Zhuang X, Deng Z, et al. Grapefruit-Derived Nanovectors use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites. Cancer Res. 2015;75(12):2520–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang L, He F, Gao L, Cong M, Sun J, Xu J, et al. Engineering Exosome-Like Nanovesicles Derived from Asparagus cochinchinensis can inhibit the proliferation of Hepatocellular Carcinoma Cells with Better Safety Profile. Int J Nanomed. 2021;16:1575–86.

    Article  Google Scholar 

  135. Xiao Q, Zhao W, Wu C, Wang X, Chen J, Shi X, et al. Lemon-Derived Extracellular vesicles Nanodrugs Enable to Efficiently Overcome Cancer Multidrug Resistance By Endocytosis-Triggered Energy Dissipation And Energy Production Reduction. Adv Sci (Weinh). 2022;9(20):e2105274.

    Article  PubMed  Google Scholar 

  136. Chen J, Pan J, Liu S, Zhang Y, Sha S, Guo H, et al. Fruit-Derived Extracellular-Vesicle-Engineered Structural Droplet drugs for enhanced Glioblastoma Chemotherapy. Adv Mater. 2023;35(45):e2304187.

    Article  PubMed  Google Scholar 

  137. Cao M, Yan H, Han X, Weng L, Wei Q, Sun X, et al. Ginseng-Derived Nanoparticles Alter Macrophage Polarization to Inhibit Melanoma Growth. J Immunother Cancer. 2019;7(1):326.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Yepes-Molina L, Martínez-Ballesta MC, Carvajal M. Plant Plasma Membrane Vesicles Interaction With Keratinocytes Reveals Their Potential as Carriers. J Adv Res. 2020;23:101–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Abraham AM, Wiemann S, Ambreen G, Zhou J, Engelhardt K, Brüßler J, et al. Cucumber-Derived Exosome-like vesicles and PlantCrystals for improved dermal drug delivery. Pharmaceutics. 2022;14(3):476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Umezu T, Takanashi M, Murakami Y, Ohno SI, Kanekura K, Sudo K, et al. Acerola Exosome-Like Nanovesicles to Systemically Deliver Nucleic Acid Medicine Via Oral Administration. Mol Ther Methods Clin Dev. 2021;21:199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xu XH, Yuan TJ, Dad HA, Shi MY, Huang YY, Jiang ZH, et al. Plant Exosomes as Novel Nanoplatforms for MicroRNA Transfer Stimulate Neural Differentiation of Stem Cells in Vitro and in vivo. Nano Lett. 2021;21(19):8151–9.

    Article  CAS  PubMed  Google Scholar 

  142. You JY, Kang SJ, Rhee WJ. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioact Mater. 2021;6(12):4321–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhang M, Wang X, Han MK, Collins JF, Merlin D. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomed (Lond). 2017;12(16):1927–43.

    Article  CAS  Google Scholar 

  144. Perut F, Roncuzzi L, Avnet S, Massa A, Zini N, Sabbadini S, et al. Strawberry-Derived Exosome-Like Nanoparticles Prevent Oxidative Stress In Human Mesenchymal Stromal Cells. Biomolecules. 2021;11(1):87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen T, Ma B, Lu S, Zeng L, Wang H, Shi W, et al. Cucumber-Derived nanovesicles Containing Cucurbitacin B for Non-small Cell Lung Cancer Therapy. Int J Nanomed. 2022;17:3583–99.

    Article  Google Scholar 

  146. Hwang JH, Park YS, Kim HS, Kim DH, Lee SH, Lee CH, et al. Yam-derived Exosome-Like Nanovesicles Stimulate Osteoblast Formation And Prevent Osteoporosis In Mice. J Control Release. 2023;355:184–98.

    Article  CAS  PubMed  Google Scholar 

  147. Wolfram J, Zhu M, Yang Y, Shen J, Gentile E, Paolino D, et al. Safety of Nanoparticles In Medicine. Curr Drug Targets. 2015;16(14):1671–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nelemans LC, Gurevich L. Drug Delivery With Polymeric Nanocarriers-Cellular Uptake Mechanisms. Mater (Basel). 2020;13(2):366.

    Article  CAS  Google Scholar 

  149. Zhou M, Huang H, Wang D, Lu H, Chen J, Chai Z, et al. Light-triggered PEGylation/dePEGylation of the Nanocarriers For Enhanced Tumor Penetration. Nano Lett. 2019;19(6):3671–5.

    Article  CAS  PubMed  Google Scholar 

  150. Gallego-Jara J, Lozano-Terol G, Sola-Martínez RA, de Cánovas-Díaz M. Diego Puente T. A Compressive Review about Taxol(®): history and Future challenges. Molecules. 2020;25(24):5986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kim DK, Rhee WJ. Antioxidative effects of Carrot-Derived Nanovesicles in Cardiomyoblast and Neuroblastoma cells. Pharmaceutics. 2021;13(8):1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gai C, Pomatto MAC, Deregibus MC, Dieci M, Piga A, Camussi G. Edible plant-derived extracellular vesicles for oral mRNA vaccine delivery. Vaccines (Basel). 2024;12(2):200.

    Article  CAS  PubMed  Google Scholar 

  153. Witwer KW. Alternative miRNAs? Human Sequences Misidentified As Plant miRNAs in Plant Studies and in Human Plasma. F1000Res. 2018;7:244.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Kang W, Bang-Berthelsen CH, Holm A, Houben AJ, Müller AH, Thymann T, et al. Survey of 800 + Data Sets from human Tissue and Body Fluid Reveals Xenomirs Are Likely Artifacts. RNA. 2017;23(4):433–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chen X, Zen K, Zhang CY. Reply to lack of Detectable Oral Bioavailability Of Plant Micrornas After Feeding in Mice. Nat Biotechnol. 2013;31(11):967–9.

    Article  CAS  PubMed  Google Scholar 

  156. Zhao Q, Liu Y, Zhang N, Hu M, Zhang H, Joshi T, et al. Evidence for Plant-Derived Xenomirs Based on a Large-Scale Analysis of Public Small Rna Sequencing Data from Human Samples. PLoS ONE. 2018;13(6):e0187519.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This project is supported by the National Natural Science Foundation of China (82074450), the Key Scientific Research Project of Hunan Education Department (21A0243), the Key Project of Academician Workstation Guidance Project (22YS002), the Key Projects of First-class Discipline of Integrated Traditional Chinese and Western Medicine (2021ZXYJH11), and the National Natural Science Foundation of Changsha City (kq2202271).

Author information

Authors and Affiliations

Authors

Contributions

X.T., R.W., and C.Y. conceived and designed the study. C.Y. wrote the first draft of the manuscript. L.L., Z.L., Q.G., and L.O. wrote sections of the manuscript. All authors commented on previous versions of the manuscript.

Corresponding authors

Correspondence to Ruoyu Wang or Xuefei Tian.

Ethics declarations

Ethics approval

Not applicable.

Consent for publication

All authors have approved the final version of the manuscript.

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, C., Lu, L., Li, Z. et al. Plant-derived exosome-like nanoparticles for microRNA delivery in cancer treatment. Drug Deliv. and Transl. Res. (2024). https://doi.org/10.1007/s13346-024-01621-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13346-024-01621-x

Keywords

Navigation