Skip to main content
Log in

Antiretroviral action of Rosemary oil-based atazanavir formulation and the role of self-nanoemulsifying drug delivery system in the management of HIV-1 infection

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Atazanavir or ATV is an FDA-approved, HIV-1 protease inhibitor that belongs to the azapeptide group. Over time, it has been observed that ATV can cause multiple adverse side effects in the form of liver diseases including elevations in serum aminotransferase, indirect hyper-bilirubinemia, and idiosyncratic acute liver injury aggravating the underlying chronic viral hepatitis. Hence, there is an incessant need to explore the safe and efficacious method of delivering ATV in a controlled manner that may reduce the proportion of its idiosyncratic reactions in patients who are on antiretroviral therapy for years. In this study, we assessed ATV formulation along with Rosemary oil to enhance the anti-HIV-1 activity and its controlled delivery through self-nanoemulsifying drug delivery system or SNEDDS to enhance its oral bioavailability. While the designing, development, and characterization of ATV-SNEDDS were addressed through various evaluation parameters and pharmacokinetic-based studies, in vitro cell-based experiments assured the safety and efficacy of the designed ATV formulation. The study discovered the potential of ATV-SNEDDS to inhibit HIV-1 infection at a lower concentration as compared to its pure counterpart. Simultaneously, we could also demonstrate the ATV and Rosemary oil providing leads for designing and developing such formulations for the management of HIV-1 infections with the alleviation in the risk of adverse reactions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The original contributions presented in this study are included in the article; further inquiries can be directed to the corresponding author/s.

References

  1. WHO. The global health observatory: HIV [Internet]. 2023 [cited 2023 Mar 18]. Available from: https://www.who.int/data/gho/data/themes/hiv-aids.

  2. Wang Y, Lv Z, Chu Y. HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV. 2015;95.

  3. Kuo H-H, Lichterfeld M. Recent progress in understanding HIV reservoirs. Curr Opin HIV AIDS. 2018;13:137–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Aquaro S, Borrajo A, Pellegrino M, Svicher V. Mechanisms underlying of antiretroviral drugs in different cellular reservoirs with a focus on macrophages. Virulence. 2020;11:400–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Malavia NK, Zurakowski D, Schroeder A, Princiotto AM, Laury AR, Barash HE, et al. Liposomes for HIV prophylaxis. Biomaterials. 2011;32:8663–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kotta S, Khan AW, Ansari SH, Sharma RK, Ali J. Anti HIV nanoemulsion formulation: optimization and in vitro-in vivo evaluation. Int J Pharm. 2014;462:129–34.

    Article  PubMed  CAS  Google Scholar 

  7. Dalvi BR, Siddiqui EA, Syed AS, Velhal SM, Ahmad A, Bandivdekar AB, et al. Nevirapine loaded core shell gold nanoparticles by double emulsion solvent evaporation: in vitro and in vivo evaluation. Curr Drug Deliv. 2016;13:1071–83.

    Article  PubMed  CAS  Google Scholar 

  8. Hari BNV, Narayanan N, Dhevendaran K, Ramyadevi D. Engineered nanoparticles of Efavirenz using methacrylate co-polymer (Eudragit-E100) and its biological effects in-vivo. Mater Sci Eng C Mater Biol Appl. 2016;67:522–32.

    Article  PubMed  CAS  Google Scholar 

  9. Kamble RN, Mehta PP, Kumar A. Efavirenz self-nano-emulsifying drug delivery system: in vitro and in vivo evaluation. AAPS PharmSciTech. 2016;17:1240–7.

    Article  PubMed  CAS  Google Scholar 

  10. Senapati PC, Sahoo SK, Sahu AN. Mixed surfactant based (SNEDDS) self-nanoemulsifying drug delivery system presenting efavirenz for enhancement of oral bioavailability. Biomed Pharmacother. 2016;80:42–51.

    Article  PubMed  CAS  Google Scholar 

  11. Gupta S, Kesarla R, Chotai N, Misra A, Omri A. Systematic approach for the formulation and optimization of solid lipid nanoparticles of efavirenz by high pressure homogenization using design of experiments for brain targeting and enhanced bioavailability. Biomed Res Int. 2017;2017:5984014.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Javan F, Vatanara A, Azadmanesh K, Nabi-Meibodi M, Shakouri M. Encapsulation of ritonavir in solid lipid nanoparticles: in-vitro anti-HIV-1 activity using lentiviral particles. J Pharm Pharmacol. 2017;69:1002–9.

    Article  PubMed  CAS  Google Scholar 

  13. Raina H, Kaur S, Jindal AB. Development of efavirenz loaded solid lipid nanoparticles: risk assessment, quality-by-design (QbD) based optimisation and physicochemical characterisation. Journal of Drug Delivery Science and Technology. 2017;39:180–91.

    Article  CAS  Google Scholar 

  14. Lu Y-Y, Dai W-B, Wang X, Wang X-W, Liu J-Y, Li P, et al. Effects of crystalline state and self-nanoemulsifying drug delivery system (SNEDDS) on oral bioavailability of the novel anti-HIV compound 6-benzyl-1-benzyloxymethyl-5-iodouracil in rats. Drug Dev Ind Pharm. 2018;44:329–37.

    Article  PubMed  CAS  Google Scholar 

  15. Tokatlian T, Kulp DW, Mutafyan AA, Jones CA, Menis S, Georgeson E, et al. Enhancing humoral responses against HIV envelope trimers via nanoparticle delivery with stabilized synthetic liposomes. Sci Rep. 2018;8:16527.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cao S, Woodrow KA. Nanotechnology approaches to eradicating HIV reservoirs. Eur J Pharm Biopharm. 2019;138:48–63.

    Article  PubMed  CAS  Google Scholar 

  17. Rojekar S, Pai R, Abadi LF, Mahajan K, Prajapati MK, Kulkarni S, et al. Dual loaded nanostructured lipid carrier of nano-selenium and Etravirine as a potential anti-HIV therapy. Int J Pharm. 2021;607:120986.

    Article  PubMed  CAS  Google Scholar 

  18. Rojekar S, Abadi LF, Pai R, Prajapati MK, Kulkarni S, Vavia PR. Mannose-Anchored nano-selenium loaded nanostructured lipid carriers of Etravirine for delivery to HIV reservoirs. AAPS PharmSciTech. 2022;23:230.

    Article  PubMed  CAS  Google Scholar 

  19. Singh G, Pai RS. Optimized self-nanoemulsifying drug delivery system of atazanavir with enhanced oral bioavailability: in vitro/in vivo characterization. Expert Opin Drug Deliv. 2014;11:1023–32.

    Article  PubMed  CAS  Google Scholar 

  20. Pubchem-NCBI. National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 148192, Atazanavir. [Internet]. 2023 [cited 2023 Mar 18]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Atazanavir.

  21. UCSF. UCSF health: HIV treatments [Internet]. 2023 [cited 2023 Mar 18]. Available from: https://www.ucsfhealth.org/conditions/hiv/treatment.

  22. Schmied F-P, Bernhardt A, Klein S. Preparation of solid self-nanoemulsifying drug delivery systems (S-SNEDDS) by co-extrusion of liquid SNEDDS and polymeric carriers-A new and promising formulation approach to improve the solubility of poorly water-soluble drugs. Pharmaceuticals (Basel). 2022;15:1135.

    Article  PubMed  CAS  Google Scholar 

  23. Buya AB, Beloqui A, Memvanga PB, Préat V. Self-nano-emulsifying drug-delivery systems: from the development to the current applications and challenges in oral drug delivery. Pharmaceutics. 2020;12:1194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Meirinho S, Rodrigues M, Santos AO, Falcão A, Alves G. Self-emulsifying drug delivery systems: an alternative approach to improve brain bioavailability of poorly water-soluble drugs through intranasal administration. Pharmaceutics. 2022;14:1487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Mena P, Cirlini M, Tassotti M, Herrlinger K, Dall’Asta C, Del Rio D. Phytochemical profiling of flavonoids, phenolic acids, terpenoids, and volatile fraction of a rosemary (Rosmarinus officinalis L.) extract. Molecules. 2016;21:1576.

  26. Aruoma OI, Spencer JP, Rossi R, Aeschbach R, Khan A, Mahmood N, et al. An evaluation of the antioxidant and antiviral action of extracts of rosemary and Provençal herbs. Food Chem Toxicol. 1996;34:449–56.

    Article  PubMed  CAS  Google Scholar 

  27. Bekut M, Brkić S, Kladar N, Dragović G, Gavarić N, Božin B. Potential of selected Lamiaceae plants in anti(retro)viral therapy. Pharmacol Res. 2018;133:301–14.

    Article  PubMed  Google Scholar 

  28. Mediouni S, Jablonski JA, Tsuda S, Barsamian A, Kessing C, Richard A, et al. Oregano oil and its principal component, carvacrol, inhibit HIV-1 fusion into target cells. J Virol. 2020;94:e00147-e220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Shiravi A, Akbari A, Mohammadi Z, Khalilian M-S, Zeinalian A, Zeinalian M. Rosemary and its protective potencies against COVID-19 and other cytokine storm associated infections: a molecular review. MNM. 2021;14:401–16.

    Article  Google Scholar 

  30. Konidala SK, Sujana K, Prameela RA. New validated RP-HPLC method for the determination of atazanavir sulphate in bulk and dosage form. Der Pharma Chemica. 2012;4:1305–10.

    CAS  Google Scholar 

  31. Qader AB, Kumar S, Kohli K, Hussein AA. Garlic oil loaded rosuvastatin solid self-nanoemulsifying drug delivery system to improve level of high-density lipoprotein for ameliorating hypertriglyceridemia. Part Sci Technol. 2022;40:165–81.

    Article  CAS  Google Scholar 

  32. Kumar S, Ali J, Baboota S. Design Expert(®) supported optimization and predictive analysis of selegiline nanoemulsion via the olfactory region with enhanced behavioural performance in Parkinson’s disease. Nanotechnology. 2016;27:435101.

    Article  PubMed  Google Scholar 

  33. Nasr A, Gardouh A, Ghorab M. Novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of olmesartan medoxomil: design, formulation, pharmacokinetic and bioavailability evaluation. Pharmaceutics. 2016;8:20.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mahour R, Sahni JK, Sharma S, Kumar S, Ali J, Baboota S. Nanoemulsion as a tool for improvement of cilostazol oral bioavailability. J Mol Liq. 2015;212:792–8.

    Article  CAS  Google Scholar 

  35. Nekkanti V, Karatgi P, Prabhu R, Pillai R. Solid self-microemulsifying formulation for candesartan cilexetil. AAPS PharmSciTech. 2010;11:9–17.

    Article  PubMed  CAS  Google Scholar 

  36. Khan SA, Rehman S, Nabi B, Iqubal A, Nehal N, Fahmy UA, et al. Boosting the brain delivery of atazanavir through nanostructured lipid carrier-based approach for mitigating NeuroAIDS. Pharmaceutics. 2020;12:1059.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Jadaun P, Seniya C, Pal SK, Kumar S, Kumar P, Nema V, et al. Elucidation of antiviral and antioxidant potential of C-phycocyanin against HIV-1 infection through in silico and in vitro approaches. Antioxidants. 2022;11:1942.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Jadaun P, shah P, Harshithkumar R, Said MS, Bhoite SP, Bokuri S, et al. Antiviral and ROS scavenging potential of Carica papaya Linn and Psidium guajava leaves extract against HIV-1 infection. BMC Complement Med Ther. 2023;23.

  39. Nagi A, Iqbal B, Kumar S, Sharma S, Ali J, Baboota S. Quality by design based silymarin nanoemulsion for enhancement of oral bioavailability. J Drug Deliv Sci Technol. 2017;40:35–44.

    Article  CAS  Google Scholar 

  40. Meena AK, Sharma K, Kandaswamy M, Rajagopal S, Mullangi R. Formulation development of an albendazole self-emulsifying drug delivery system (SEDDS) with enhanced systemic exposure. Acta Pharm. 2012;62:563–80.

    Article  PubMed  CAS  Google Scholar 

  41. Hussain A, Shakeel F, Singh SK, Alsarra IA, Faruk A, Alanazi FK, et al. Solidified SNEDDS for the oral delivery of rifampicin: evaluation, proof of concept, in vivo kinetics, and in silico GastroPlusTM simulation. Int J Pharm. 2019;566:203–17.

    Article  PubMed  CAS  Google Scholar 

  42. Nair AB, Singh B, Shah J, Jacob S, Aldhubiab B, Sreeharsha N, Morsy MA, Venugopala KN, Attimarad M, Shinu P. Formulation and evaluation of self-nanoemulsifying drug delivery system derived tablet containing sertraline. Pharmaceutics. 2022;14(2):336.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Baloch J, Sohail MF, Sarwar HS, Kiani MH, Khan GM, Jahan S, Rafay M, Chaudhry MT, Yasinzai M, Shahnaz G. Self-nanoemulsifying drug delivery system (SNEDDS) for improved oral bioavailability of chlorpromazine: in vitro and in vivo evaluation. Medicina (Kaunas). 2019;55(5):210.

    Article  PubMed  Google Scholar 

  44. Zafar A, Yasir M, Alruwaili NK, et al. Formulation of self-nanoemulsifying drug delivery system of cephalexin: physiochemical characterization and antibacterial evaluation. Polymers (Basel). 2022;14(5):1055.

    Article  PubMed  CAS  Google Scholar 

  45. Tung NT, Tran CS, Nguyen HA, et al. Formulation and biopharmaceutical evaluation of supersaturatable self-nanoemulsifying drug delivery systems containing silymarin. Int J Pharm. 2019;555:63–76.

    Article  PubMed  CAS  Google Scholar 

  46. McClements DJ. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter. 2011;7:2297–316.

    Article  CAS  Google Scholar 

  47. McClements DJ, Xiao H. Potential biological fate of ingested nanoemulsions: influence of particle characteristics. Food Funct. 2012;3(3):202–20.

    Article  PubMed  CAS  Google Scholar 

  48. Dhabliya D, Khan SAQ, Umate M, Raut B, Singhavi D. Atazanavir-loaded crosslinked gamma-cyclodextrin nanoparticles to improve solubility and dissolution characteristics. Turk J Pharm Sci. 2022;19:408–15.

  49. Rathore C, Hemrajani C, Sharma AK, Gupta PK, Jha NK, Aljabali AAA, et al. Self-nanoemulsifying drug delivery system (SNEDDS) mediated improved oral bioavailability of thymoquinone: optimization, characterization, pharmacokinetic, and hepatotoxicity studies. Drug Deliv Transl Res. 2023;13:292–307.

    Article  PubMed  CAS  Google Scholar 

  50. Dhabliya D, Khan SAQ, Umate M, Raut B, Singhavi D. Atazanavir-loaded crosslinked gamma-cyclodextrin nanoparticles to improve solubility and dissolution characteristics. Turk J Pharm Sci. 2022;19(4):408–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Malviya V, Burange P, Thakur Y, Tawar M. Enhancement of solubility and dissolution rate of atazanavir sulfate by nanocrystallization. Indian J of Pharmaceutical Education and Research. 2021;55(3s):s672–80.

    Article  CAS  Google Scholar 

  52. Parmar K, Patel J, Sheth N. Self nano-emulsifying drug delivery system for embelin: design, characterization and in-vitro studies. Asian J Pharm Sci. 2015;10:396–404.

    Article  Google Scholar 

  53. Ozcan MM, Chalchat J-C. Chemical composition and antifungal activity of rosemary (Rosmarinus officinalis L.) oil from Turkey. Int J Food Sci Nutr. 2008;59:691–8.

  54. Abushal AS, Aleanizy FS, Alqahtani FY, Shakeel F, Iqbal M, Haq N, et al. Self-nanoemulsifying drug delivery system (SNEDDS) of apremilast: in vitro evaluation and pharmacokinetics studies. Molecules. 2022;27:3085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. El-Dakroury WA, Zewail MB, Elsabahy M, Shabana ME, Asaad GF. Famotidine-loaded solid self-nanoemulsifying drug delivery system demonstrates exceptional efficiency in amelioration of peptic ulcer. Int J Pharm. 2022;611:121303.

    Article  PubMed  CAS  Google Scholar 

  56. Kazi M, Alqahtani A, Alharbi M, Ahmad A, Hussain MD, Alothaid H, et al. The development and optimization of lipid-based self-nanoemulsifying drug delivery systems for the intravenous delivery of Propofol. Molecules. 2023;28:1492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Garg H, Mittal S, Ashhar MU, Kumar S, Dang S, Nigam K, et al. Bioavailability enhancement of Paroxetine loaded self nanoemulsifying drug delivery system (SNEDDS) to improve behavioural activities for the management of depression. J Clust Sci. 2023;34:223–36.

    Article  CAS  Google Scholar 

  58. Puri R, Mahajan M, Sahajpal NS, Singh H, Singh H, Jain SK. Self-nanoemulsifying drug delivery system of docosahexanoic acid: development, in vitro, in vivo characterization. Drug Dev Ind Pharm. 2016;42:1032–41.

    Article  PubMed  CAS  Google Scholar 

  59. Gupta BK, Kumar S, Kaur H, Ali J, Baboota S. Attenuation of oxidative damage by coenzyme Q10 loaded nanoemulsion through oral route for the management of Parkinson’s disease. Rejuvenation Res. 2018;21(3):232–48.

    Article  PubMed  CAS  Google Scholar 

  60. Khan N, Shah FA, Rana I, Ansari MM, Din FU, Rizvi SZH, Aman W, Lee G-Y, Lee E-S, Kim J-K, et al. Nanostructured lipid carriers-mediated brain delivery of carbamazepine for improved in vivo anticonvulsant and anxiolytic activity. Int J Pharm. 2020;577:119033.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang H, Yao M, Morrison RA, Chong S. Commonly used surfactant, Tween 80, improves absorption of P-glycoprotein substrate, digoxin, in rats. Arch Pharm Res. 2003;26:768–72.

    Article  PubMed  CAS  Google Scholar 

  62. WHO. World Health Organization model list of essential medicines: 21st list 2019 [Internet]. 2019 [cited 2023 Apr 28]. Available from: https://apps.who.int/iris/handle/10665/325771.

  63. Chattopadhyay N, Zastre J, Wong H-L, Wu XY, Bendayan R. Solid lipid nanoparticles enhance the delivery of the HIV protease inhibitor, atazanavir, by a human brain endothelial cell line. Pharm Res. 2008;25:2262–71.

    Article  PubMed  CAS  Google Scholar 

  64. Amano M, Yedidi RS, Salcedo-Gómez PM, Hayashi H, Hasegawa K, Martyr CD, et al. Fluorine modifications contribute to potent antiviral activity against highly drug-resistant HIV-1 and favorable blood-brain barrier penetration property of novel central nervous system-targeting HIV-1 protease inhibitors in vitro. Antimicrob Agents Chemother. 2022;66:e0171521.

    Article  PubMed  Google Scholar 

  65. Croom KF, Dhillon S, Keam SJ. Atazanavir: a review of its use in the management of HIV-1 infection. Drugs. 2009;69:1107–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The Indian Council of Medical Research and ICMR-National AIDS Research Institute, Pune, India, funded this research vide grant no. NARI/SAC/VN/2022-23/2266 (VN and AM).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SK and AM; methodology: SK, DT, AM, and SYG; validation: SK, SYG, and AM; formal analysis: SK, SYG, and AM; investigation: SK, DT, AM, and SYG; resources: SK and AM; data curation: SK, DT, SYG, and AM; writing—original draft preparation: SK, SYG, and AM; writing—review and editing: VN and AM; visualization: SK and AM; supervision: SK and AM; project administration; AM; funding acquisition: SK, VN, and AM. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Anupam Mukherjee.

Ethics declarations

Ethics approval and consent to participate

The study was conducted in accordance with the Declaration of Helsinki and approved by the Institutional Animal Ethical Committee (IEAC), MIET, Meerut (UP), India, vide protocol no. IAEC/MIET/2022/49 and the Institutional Ethical Committee (IEC), ICMR-NARI, Pune (MH), India, vide protocol no. NARI/EC/Approval/2022/662. No human specimen was used in this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13346_2023_1492_MOESM1_ESM.tif

Supplementary Fig. 1: A schematic representation of the Zeta potential for different batches of formulation (D1–D8). Measurements were obtained using the electrophoretic mobility method. Here the Zeta potential is negative because of the presence of free unsaturated fats in the oil. (TIF 2395 KB)

13346_2023_1492_MOESM2_ESM.tif

Supplementary Fig. 2: Comparison study of in vitro release profiles of ATV from ATV SNEDDS formulations (D1 and D4) and S-SNEDDS formulations (D1 and D4) up to 360 min. Each point represents the mean ± standard deviation (n = 3). Curves are presented as the percentage of drug release at different time points. (TIF 2011 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Taumar, D., Gaikwad, S. et al. Antiretroviral action of Rosemary oil-based atazanavir formulation and the role of self-nanoemulsifying drug delivery system in the management of HIV-1 infection. Drug Deliv. and Transl. Res. (2023). https://doi.org/10.1007/s13346-023-01492-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13346-023-01492-8

Keywords

Navigation