Skip to main content
Log in

A comparative study on the preparation and evaluation of solubilizing systems for silymarin

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Silymarin (SM) exhibits clinical efficacy in treating liver injuries, cirrhosis, and chronic hepatitis. However, its limited water solubility and low bioavailability hinder its therapeutic potential. The primary objective of this study was to compare the in vitro and in vivo characteristics of the four distinct SM solubilization systems, namely SM solid dispersion (SM-SD), SM phospholipid complex (SM-PC), SM sulfobutyl ether-β-cyclodextrin inclusion complex (SM-SBE-β-CDIC) and SM self-microemulsifying drug delivery system (SM-SMEDDS) to provide further insights into their potential for enhancing the solubility and bioavailability of SM. The formation of SM-SD, SM-PC, and SM-SBE-β-CDIC was thoroughly characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffractometry (PXRD) techniques to analyze the changes in their microscopic structure, molecular structure, and crystalline state. The particle size and polydispersity index (PDI) of SM-SMEDDS were 71.6 ± 1.57 nm, and 0.13 ± 0.03, respectively. The self-emulsifying time of SM-SMEDDS was 3.0 ± 0.3 min. SM-SMEDDS exhibited an improved in vitro dissolution rate and demonstrated the highest relative bioavailability compared to pure SM, SM-SD, SM-PC, SM-SBE-β-CDIC, and Legalon®. Consequently, SMEDDS shows promise as a drug delivery system for orally administered SM, offering enhanced solubility and bioavailability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Surai PF. Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxid (Basel Switzerland). 2015;4(1):204–47.

    CAS  Google Scholar 

  2. Lu C, Lu Y, Chen J, Zhang W, Wu W. Synchronized and sustained release of multiple components in silymarin from erodible glyceryl monostearate matrix system. Eur J Pharm Biopharm. 2007;66(2):210–9.

    Article  CAS  PubMed  Google Scholar 

  3. Fallah M, Davoodvandi A, Nikmanzar S, Aghili S, Mirazimi SMA, Aschner M, et al. Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomed Pharmacother. 2021;142:112024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wadhwa K, Pahwa R, Kumar M, Kumar S, Sharma PC, Singh G, et al. Mechanistic insights into the pharmacological significance of silymarin. Molecules. 2022;27(16):5327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Javed S, Kohli K, Ali M. Reassessing bioavailability of silymarin. Altern Med Rev. 2011;16(3):239–49.

    PubMed  Google Scholar 

  6. Lian R, Lu Y, Qi J, Tan Y, Niu M, Guan P, et al. Silymarin glyceryl monooleate/poloxamer 407 liquid crystalline matrices: physical characterization and enhanced oral bioavailability. AAPS PharmSciTech. 2011;12(4):1234–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu CH, Lin CC, Hsu WC, Chung CY, Lin C-C, Jassey A, et al. Highly bioavailable silibinin nanoparticles inhibit hcv Infection. Gut. 2017;66(10):1853–61.

    Article  CAS  PubMed  Google Scholar 

  8. Yousaf AM, Malik UR, Shahzad Y, Mahmood T, Hussain T. Silymarin-laden pvp-peg polymeric composite for enhanced aqueous solubility and dissolution rate: Preparation and in vitro characterization. J Pharm Anal. 2019;9(1):34–9.

    Article  PubMed  Google Scholar 

  9. Zeng QP, Liu ZH, Huang AW, Zhang J, Song HT. Preparation and characterization of silymarin synchronized-release microporous osmotic pump tablets. Drug Des Devel Ther. 2016;10:519–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ghosh A, Biswas S, Ghosh T. Preparation and evaluation of silymarin β-cyclodextrin molecular inclusion complexes. J Young Pharm. 2011;3(3):205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu W, Wang Y, Que L. Enhanced bioavailability of silymarin by self-microemulsifying drug delivery system. Eur J Pharm Biopharm. 2006;63(3):288–94.

    Article  CAS  PubMed  Google Scholar 

  12. Li X, Yuan Q, Huang Y, Zhou Y, Liu Y. Development of silymarin self-microemulsifying drug delivery system with enhanced oral bioavailability. AAPS PharmSciTech. 2010;11(2):672–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Singh A, Kumar A, Verma RK. Shukla. Silymarin encapsulated nanoliquid crystals for improved activity against beta amyloid induced cytotoxicity. Int J Biol Macromol. 2020;149:1198–206.

    Article  CAS  PubMed  Google Scholar 

  14. Huang Y, Dai WG. Fundamental aspects of solid dispersion technology for poorly soluble Drugs. Acta Pharm Sin B. 2014;4(1):18–25.

    Article  PubMed  Google Scholar 

  15. Baghel S, Cathcart H. O’Reilly. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class ii Drugs. J Pharm Sci. 2016;105(9):2527–44.

    Article  CAS  PubMed  Google Scholar 

  16. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble Drugs. Drug Discov Today. 2007;12(23–24):1068–75.

    Article  CAS  PubMed  Google Scholar 

  17. Dong W, Su X, Xu M, Hu M, Sun Y. Zhang. Preparation, characterization, and in vitro/vivo evaluation of polymer-assisting formulation of atorvastatin calcium based on solid dispersion technique. Asian J Pharm Sci. 2018;13(6):546–54.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Barani M, Sangiovanni E, Angarano M, Rajizadeh MA, Mehrabani M, Piazza S, et al. Phytosomes as innovative delivery systems for phytochemicals: a comprehensive review of literature. Int J Nanomedicine. 2021;16:6983–7022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hou Z, Li Y, Huang Y, Zhou C, Lin J, Wang Y, et al. Phytosomes loaded with mitomycin c-soybean phosphatidylcholine complex developed for drug delivery. Mol Pharm. 2013;10(1):90–101.

    Article  CAS  PubMed  Google Scholar 

  20. Fong SYK, Ibisogly A, Bauer-Brandl A. Solubility enhancement of bcs class ii drug by solid phospholipid dispersions: spray drying versus freeze-drying. Int J Pharm. 2015;496(2):382–91.

    Article  CAS  PubMed  Google Scholar 

  21. Yanyu X, Yunmei S, Zhipeng C, Qineng P. The preparation of silybin-phospholipid complex and the study on its pharmacokinetics in rats. Int J Pharm. 2006;307(1):77–82.

    Article  PubMed  Google Scholar 

  22. Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin-phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm. 2007;330(1–2):155–63.

    Article  CAS  PubMed  Google Scholar 

  23. Yue PF, Yuan HL, Li XY, Yang M, Zhu WF. Process optimization, characterization and evaluation in vivo of oxymatrine-phospholipid complex. Int J Pharm. 2010;387(1–2):139–46.

    Article  CAS  PubMed  Google Scholar 

  24. Kazlauskaite JA, Ivanauskas L, Bernatoniene J. Cyclodextrin-assisted extraction method as a green alternative to increase the isoflavone yield from trifolium pratensis l. Extract Pharm. 2021;13(5):620.

    CAS  Google Scholar 

  25. Cid-Samamed A, Rakmai J, Mejuto JC, Simal-Gandara J. Astray. Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chem. 2022;384:132467.

    Article  CAS  PubMed  Google Scholar 

  26. Paiva-Santos AC, Ferreira L, Peixoto D, Silva F, Soares MJ, Zeinali M, et al. Cyclodextrins as an encapsulation molecular strategy for volatile organic compounds- pharmaceutical applications. Colloids Surf B Biointerfaces. 2022;218:112758.

    Article  CAS  PubMed  Google Scholar 

  27. Araj SK, Szeleszczuk Ł. A review on cyclodextrins/estrogens inclusion complexes. Int J Mol Sci. 2023;24(10):8780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marcolino AIP, Macedo LB, Nogueira-Librelotto DR, Fernandes JR, Bender CR, Wust KM, et al. Preparation, characterization and in vitro cytotoxicity study of dronedarone hydrochloride inclusion complexes. Mater Sci Eng C Mater Biol Appl. 2019;100:48–61.

    Article  CAS  PubMed  Google Scholar 

  29. Liu CS, Chen L, Hu YN, Dai JL, Ma B, Tang QF, et al. Self-microemulsifying drug delivery system for improved oral delivery and hypnotic efficacy of ferulic acid. Int J Nanomedicine. 2020;15:2059–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Patel D, Sawant KK. Oral bioavailability enhancement of acyclovir by self-microemulsifying drug delivery systems (smedds). Drug Dev Ind Pharm. 2007;33(12):1318–26.

    Article  CAS  PubMed  Google Scholar 

  31. Guo R, Guo X, Hu X, Abbasi AM, Zhou L, Li T, et al. Fabrication and optimization of self-microemulsions to improve the oral bioavailability of total flavones of hippophaë rhamnoides l. J Food Sci. 2017;82(12):2901–9.

    Article  CAS  PubMed  Google Scholar 

  32. Ye YJ, Wang Y, Lou KY, Chen YZ, Chen R, Gao F. The preparation, characterization, and pharmacokinetic studies of chitosan nanoparticles loaded with paclitaxel/dimethyl-β-cyclodextrin inclusion complexes. Int J Nanomedicine. 2015;10:4309–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Xie Y, Lu Y, Qi J, Li X, Zhang X, Han J, et al. Synchronized and controlled release of multiple components in silymarin achieved by the osmotic release strategy. Int J Pharm. 2013;441(1–2):111–20.

    Article  CAS  PubMed  Google Scholar 

  34. Nguyen THT, Trinh NT, Tran HN, Tran HT, Le PQ, Ngo DN, et al. Improving silymarin oral bioavailability using silica-installed redox nanoparticle to suppress inflammatory bowel Disease. J Control Release. 2021;331:515–24.

    Article  CAS  PubMed  Google Scholar 

  35. Mori Y, Motoyama K, Ishida M, Onodera R, Higashi T, Arima H. Theoretical and practical evaluation of lowly hydrolyzed polyvinyl alcohol as a potential carrier for hot-melt extrusion. Int J Pharm. 2019;555:124–34.

    Article  CAS  PubMed  Google Scholar 

  36. Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002;231(2):131–44.

    Article  CAS  PubMed  Google Scholar 

  37. Bhujbal SV, Mitra B, Jain U, Gong Y, Agrawal A, Karki S, et al. Pharmaceutical amorphous solid dispersion: a review of manufacturing strategies. Acta Pharm Sin B. 2021;11(8):2505–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Djuris J, Milovanovic S, Medarevic D, Dobricic V, Dapčević A, Ibric S. Selection of the suitable polymer for supercritical fluid assisted preparation of carvedilol solid dispersions. Int J Pharm. 2019;554:190–200.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang C, Xu T, Zhang D, He W, Wang S, Jiang T. Disulfiram thermosensitive in-situ gel based on solid dispersion for cataract. Asian J Pharm Sci. 2018;13(6):527–35.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Eloy JO, Marchetti JM. Solid dispersions containing ursolic acid in poloxamer 407 and peg 6000: a comparative study of fusion and solvent methods. Power Technol. 2014;253:98–106.

    Article  CAS  Google Scholar 

  41. Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble Drugs and application to anticancer Drugs. Pharmaceutics. 2019;11(3):132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chaves LL, Vieira ACC, Ferreira D, Sarmento B, Reis S. Rational and precise development of amorphous polymeric systems with dapsone by response surface methodology. Int J Biol Macromol. 2015;81:662–71.

    Article  CAS  PubMed  Google Scholar 

  43. Mahmoud K, Swidan S, El-Nabarawi M, Teaima M. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances. J Nanobiotechnol. 2022;20(1):109.

    Article  CAS  Google Scholar 

  44. Lu M, Qiu Q, Luo X, Liu X, Sun J, Wang C, et al. Phyto-phospholipid complexes (phytosomes): a novel strategy to improve the bioavailability of active constituents. Asian J Pharm Sci. 2019;14(3):265–74.

    Article  PubMed  Google Scholar 

  45. Shete VS, Telange DR, Mahajan NM, Pethe AM, Mahapatra DK. Development of phospholipon®90 h complex nanocarrier with enhanced oral bioavailability and anti-inflammatory potential of genistein. Drug Deliv. 2023;30(1):2162158.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Alharbi WS, Almughem FA, Almehmady AM, Jarallah SJ, Alsharif WK, Alzahrani NM, et al. Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals. Pharmaceutics. 2021;13(9):1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jena SK, Singh C, Dora CP, Suresh S. Development of tamoxifen-phospholipid complex: novel approach for improving solubility and bioavailability. Int J Pharm. 2014;473(1–2):1–9.

    Article  CAS  PubMed  Google Scholar 

  48. Dan Córdoba AV, Aiassa V, Dimmer JA, Barrionuevo CN, Quevedo MA, Longhi MR, et al. Development and characterization of pharmaceutical systems containing rifampicin. Pharmaceutics. 2023;15(1):198.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Deng Y, Pang Y, Guo Y, Ren Y, Wang F, Liao X, et al. Host-guest inclusion systems of daidzein with 2-hydroxypropyl-β-cyclodextrin (hp-β-cd) and sulfobutyl ether-β-cyclodextrin (sbe-β-cd): Preparation, binding behaviors and water solubility. J Mol Struct. 2016;1118:307–15.

    Article  CAS  Google Scholar 

  50. Balata G, Shamrool H. Spherical agglomeration versus solid dispersion as different trials to optimize dissolution and bioactivity of silymarin. J Drug Deliv. 2014;24(5):478–85.

    CAS  Google Scholar 

  51. Zhu W, Fan W, Zhang X, Gao M. Sustained-release solid dispersion of high-melting-point and insoluble resveratrol prepared through hot melt extrusion to improve its solubility and bioavailability. Molecules. 2021;26(16):4982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Clichici S, David L, Moldovan B, Baldea I, Olteanu D, Filip M, et al. Hepatoprotective effects of silymarin coated gold nanoparticles in experimental cholestasis. Mater Sci Eng C Mater Biol Appl. 2020;115:111117.

    Article  CAS  PubMed  Google Scholar 

  53. Dontireddy R, Crean AM. A comparative study of spray-dried and freeze-dried hydrocortisone/polyvinyl pyrrolidone solid dispersions. Drug Dev Ind Pharm. 2011;37(10):1141–9.

    Article  CAS  PubMed  Google Scholar 

  54. Rodenak-Kladniew B, Islan GA, de Bravo MG, Durán N, Castro GR. Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy. Colloids Surf B Biointerfaces. 2017;154:123–32.

    Article  CAS  PubMed  Google Scholar 

  55. Chi C, Zhang C, Liu Y, Nie H, Zhou J, Ding Y. Phytosome-nanosuspensions for silybin-phospholipid complex with increased bioavailability and hepatoprotection efficacy. Eur J Pharm Sci. 2020;144:105212.

    Article  CAS  PubMed  Google Scholar 

  56. Shriram RG, Moin A, Alotaibi HF, Khafagy E-S, Al Saqr A, Abu Lila AS, et al. Phytosomes as a plausible nano-delivery system for enhanced oral bioavailability and improved hepatoprotective activity of silymarin. Pharmaceuticals. 2022;15(7):790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu F, Antoniou J, Li Y, Majeed H, Liang R, Ma Y, et al. Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for tea polyphenol encapsulation. Food Hydrocolloid. 2016;57:291–300.

    Article  CAS  Google Scholar 

  58. Shankar VK, Police A, Pandey P, Cuny ZG, Repka MA, Doerksen RJ, et al. Optimization of sulfobutyl-ether-β-cyclodextrin levels in oral formulations to enhance progesterone bioavailability. Int J Pharm. 2021;596:120212.

    Article  CAS  PubMed  Google Scholar 

  59. Vippagunta SR, Maul KA, Tallavajhala S, Grant DJW. Solid-state characterization of nifedipine solid dispersions. Int J Pharm. 2002;236(1–2):111–23.

    Article  CAS  PubMed  Google Scholar 

  60. Song IS, Nam SJ, Jeon JH, Park SJ, Choi MK. Enhanced bioavailability and efficacy of silymarin solid dispersion in rats with acetaminophen-induced hepatotoxicity. Pharmaceutics. 2021;13(5):628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. He X, Pei L, Tong HHY, Zheng Y. Comparison of spray freeze drying and the solvent evaporation method for preparing solid dispersions of baicalein with pluronic f68 to improve dissolution and oral bioavailability. AAPS PharmSciTech. 2011;12(1):104–13.

    Article  CAS  PubMed  Google Scholar 

  62. Hsieh CM, Yang TL, Putri AD, Chen CT. Application of design of experiments in the development of self-microemulsifying drug delivery systems. Pharmaceuticals. 2023;16(2):283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hu X, Lin C, Chen D, Zhang J, Liu Z, Wu W, et al. Sirolimus solid self-microemulsifying pellets: Formulation development, characterization and bioavailability evaluation. Int J Pharm. 2012;438(1–2):123–33.

    Article  CAS  PubMed  Google Scholar 

  64. Li F, Hu R, Wang B, Gui Y, Cheng G, Gao S, et al. Self-microemulsifying drug delivery system for improving the bioavailability of huperzine a by lymphatic uptake. Acta Pharm Sin B. 2017;7(3):353–60.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lim DY, Pang M, Lee J, Lee J, Jeon JH, Park JH, et al. Enhanced bioavailability and hepatoprotective effect of silymarin by preparing silymarin-loaded solid dispersion formulation using freeze-drying method. Arch Pharm Res. 2022;45(10):743–60.

    Article  CAS  PubMed  Google Scholar 

  66. Abenavoli L, Capasso R, Milic N, Capasso F. Milk thistle in Liver Diseases: past, present, future. Phytother Res. 2010;24(10):1423–32.

    Article  CAS  PubMed  Google Scholar 

  67. Brinda BJ, Zhu HJ, Markowitz JS. A sensitive lc-ms/ms assay for the simultaneous analysis of the major active components of silymarin in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;902:1–9.

    Article  CAS  PubMed  Google Scholar 

  68. Li Y, Su H, Yin ZP, Li JE, Yuan E. Zhang. Metabolism, tissue distribution and excretion of taxifolin in rat. Biomed Pharmacother. 2022;150:112959.

    Article  CAS  PubMed  Google Scholar 

  69. Wen Z, Dumas TE, Schrieber SJ, Hawke RL, Fried MW, Smith PC. Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract. Drug Metab Dispos. 2008;36(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  70. Liang J, Liu Y, Liu J, Li Z, Fan Q, Jiang Z, et al. Chitosan-functionalized lipid-polymer hybrid nanoparticles for oral delivery of silymarin and enhanced lipid-lowering effect in nafld. J Nanobiotechnol. 2018;16(1):64.

    Article  Google Scholar 

  71. Salunkhe R, Gadgoli C, Naik A, Patil N. Pharmacokinetic profile and oral bioavailability of diosgenin, charantin, and hydroxychalcone from a polyherbal formulation. Front Pharmacol. 2021;12:629272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Woo JS, Kim TS, Park JH, Chi SC. Formulation and biopharmaceutical evaluation of silymarin using smedds. Arch Pharm Res. 2007;30(1):82–9.

    Article  CAS  PubMed  Google Scholar 

  73. Jo K, Kim H, Khadka P, Jang T, Kim SJ, Hwang S-H, et al. Enhanced intestinal lymphatic absorption of saquinavir through supersaturated self-microemulsifying drug delivery systems. Asian J Pharm Sci. 2020;15(3):336–46.

    Article  PubMed  Google Scholar 

  74. Sun N, Zhang X, Lu Y. Wu. In vitro evaluation and pharmacokinetics in dogs of solid dispersion pellets containing silybum marianum extract prepared by fluid-bed coating. Planta Med. 2008;74(2):126–32.

    Article  CAS  PubMed  Google Scholar 

  75. Ye J, Gao Y, Ji M, Yang Y, Wang Z, Wang B, et al. Oral smedds promotes lymphatic transport and mesenteric lymph nodes target of chlorogenic acid for effective t-cell antitumor immunity. J Immunother Cancer. 2021;9(7):e002753.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to extend our gratitude to Laien Xue, Yunfeng Fu, and Fuli Wen (Department of Comparative Medicine, 900 Hospital of the Joint Logistics Team, Fuzhou, China) for their invaluable technical assistance.

Funding

This work was supported by the Natural Science Foundation of Fujian Province (Grant no. 2015J01491).

Author information

Authors and Affiliations

Authors

Contributions

Zhenzhen Chen: Methodology, Investigation, Validation, Writing - original draft. Wenhao Gao: Methodology, Investigation, Validation, Writing - original draft. Xianquan Feng: Visualization, Methodology. Guizhi Zhou: Methodology. Minxin Zhang: Software, Methodology. Lingjun Zeng: Investigation, Software. Xiaomu Hu: Formal analysis. Zhihong Liu: Supervision, Funding acquisition. Hongtao Song: Conceptualization, Supervision, Project administration, Writing - review & editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhihong Liu or Hongtao Song.

Ethics declarations

Ethics approval and consent to participate

All animal experiments conducted in this work were complied with ethical regulations and approved by the 900 Hospital Experimental Animal Welfare and Ethics Committee.

Consent for publication

All authors agreed with the content and all gave explicit consent to submit the manuscript.

Competing interests

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhenzhen Chen, Wenhao Gao and Xianquan Feng contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Gao, W., Feng, X. et al. A comparative study on the preparation and evaluation of solubilizing systems for silymarin. Drug Deliv. and Transl. Res. 14, 1616–1634 (2024). https://doi.org/10.1007/s13346-023-01476-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01476-8

Keywords

Navigation