Skip to main content

Advertisement

Log in

Multilevel chitosan–gelatin particles loaded with P4HA1 siRNA suppress glioma development

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

It has been reported that prolyl 4-hydroxylase subunit alpha 1 (P4HA1) promoted tumor growth and metastasis of glioma; thus, targeting P4HA1 may be a promising therapeutic strategy against glioma. In consideration of the instability of siRNA in vivo, the chitosan–gelatin microspheres loaded with P4HA1 siRNA (P4HA1 siRNA@CGM) were employed. Firstly, the gel electrophoresis and hemolytic test were performed to assess the stability and blood compatibility of P4HA1 siRNA@CGM. Then, methyl thiazolyl tetrazolium (MTT), cell colony formation, Transwell assay, wound healing assay, gliosphere formation, tube formation, and Western blot were performed to assess the effects of P4HA1 siRNA@CGM on the biological functions of glioma. Finally, 125I-labeled P4HA1 siRNA@CGM was injected into the xenograft mice, radionuclide imaging was recorded, Ki67 and terminal deoxynucleoitidyl transferase–mediated nick end labeling (TUNEL) staining was performed to assess the effects of P4HA1 siRNA@CGM on tumor growth and apoptosis of glioma in vivo. The results showed that P4HA1 siRNA and P4HA1 siRNA@CGM not only markedly inhibited the proliferation, metastasis, gliosphere formation, and the protein levels of interstitial markers (N-cadherin and vimentin) and the transcription factors of epithelial–mesenchymal transition (EMT) (Snail, Slug, and Twist1) in glioma cells, but also inhibited the tube formation in human brain microvascular endothelial cells (HBMECs), and P4HA1 siRNA@CGM exhibited the better inhibitory effects than P4HA1 siRNA. Above results suggested the feasibility of P4HA1 siRNA@CGM in the clinical treatment of glioma.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All relevant data are available from the authors upon request.

References

  1. Huang H, Yang G, Zhang W, Xu X, Lai X. A deep multi-task learning framework for brain tumor segmentation. Front Oncol. 2021;11:690244.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Xu X, Liang Y, Gareev I, Liang Y, Liu R, Wang N et al. LncRNA as potential biomarker and therapeutic target in glioma. Mol Biol Rep. 2022:1–11.

  3. Hua L, Wang G, Wang Z, Fu J, Fang Z, Zhuang T, et al. Activation of STAT1 by the FRK tyrosine kinase is associated with human glioma growth. J Neuro Oncol. 2019;143(1):35–47.

    Article  CAS  PubMed  Google Scholar 

  4. Shaik S, Kennis B, Maegawa S, Schadler K, Gopalakrishnan V. REST upregulates gremlin to modulate diffuse intrinsic pontine glioma vasculature. Oncotarget. 2018;9(4):5233–50.

    Article  PubMed  Google Scholar 

  5. Agarwal S, Behring M, Kim HG, Bajpai P, Manne U. Targeting P4HA1 with a small molecule inhibitor in a colorectal cancer PDX Model. Transl Oncol. 2020;13(4):100754.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen W, Yu F, Di M, Li M, Chen Y, Yu Z, et al. MicroRNA-124-3p inhibits collagen synthesis in atherosclerotic plaques by targeting prolyl 4-hydroxylase subunit alpha-1 (P4HA1) in vascular smooth muscle cells. Atherosclerosis. 2018;277:98–107.

    Article  CAS  PubMed  Google Scholar 

  7. Robinson AD, Chakravarthi B, Agarwal S, Chandrashekar DS, Varambally S. Collagen modifying enzyme P4HA1 is overexpressed and plays a role in lung adenocarcinoma. Translational Oncology. 2021;14(8):101128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gilkes, Daniele M, Chaturvedi, Pallavi, Bajpai, Saumendra et al. Collagen prolyl hydroxylases are essential for breast cancer metastasis. Cancer Res. 2013;73:3285–96.

  9. Duan Y, Dong Y, Dang R, Hu Z, Ye Y, Hu Y, et al. MiR-122 inhibits epithelial mesenchymal transition by regulating P4HA1 in ovarian cancer cells. Cell Biol Int. 2018;42(11):1564–74.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Q, Yin Y, Zhao H, Shi Y, Yu Z. P4HA1 regulates human colorectal cancer cells through HIF1αmediated Wnt signaling. Oncol Lett. 2021;21(2):145.

    Article  CAS  PubMed  Google Scholar 

  11. Zhou Y, Jin G, Mi R, Zhang J, Liu F. Knockdown of P4HA1 inhibits neovascularization via targeting glioma stem cell-endothelial cell transdifferentiation and disrupting vascular basement membrane. Oncotarget. 2017;8(22):35877–89.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fang S, Zhang JW, Dong CY, Tian YF, Wang QY, Liu FS, et al. P4HA1 regulates EMT to affect glioma invasion. SCIENTIA SINICA Vitae. 2020;50(4):446–57.

    Article  Google Scholar 

  13. Desbrieres J, Peptu C, Ochiuz L, Savin C, Vasiliu S. Application of chitosan-based formulations in controlled drug delivery. 2019.

  14. Toffoli G. Chitosan-based biocompatible copolymers for thermoresponsive drug delivery systems: on the development of a standardization system. Pharmaceutics. 2021;13(11):1876.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu X, Wang Z, Xu C, Guan J, Wei B, Liu Y. Study on the gelatin methacryloyl composite scaffold with exogenous transforming growth factor β1to promote the repair of skull defects. Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery. 2021;35(7):904–12.

  16. Shamloo A, Sarmadi M, Aghababaie Z, Vossoughi M. Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres. Int J Pharm. 2018;537(1–2):278–89.

    Article  CAS  PubMed  Google Scholar 

  17. Youzhi W, Jincheng W, Shiqiang S, Pinhua R, Feng Z. Preparation and application properties of sustainable gelatin/chitosan soil conditioner microspheres. Int J Biol Macromol. 2020;159(2):685–95.

    Article  PubMed  Google Scholar 

  18. Chen D, Yu X. Long noncoding RNA TSLNC8 suppresses cell proliferation and metastasis and promotes cell apoptosis in human glioma. Mol Med Rep. 2018;18(6):5536–44.

    CAS  PubMed  Google Scholar 

  19. Qu C, Wang C, Li H, Zou W. Estrogen receptor variant ER-α36 facilitates estrogen signaling via EGFR signaling in glioblastoma. Cell Biol Int. 2022;46(11):1759–74.

    Article  CAS  PubMed  Google Scholar 

  20. Chearwae B. PPARgamma agonists inhibit growth and expansion of CD133+ brain tumour stem cells. Br J Cancer. 2008;99(12):2044–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang YG, Zhan YP, Pan SY, Wang HD, Zhang DX, Gao K, et al. Hyperbaric oxygen promotes malignant glioma cell growth and inhibits cell apoptosis. Oncol Lett. 2015;10(1):189–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Howard KA, Paludan SRR, Behlke MA, Besenbacher F, Deleuran B, Kjems JR. Chitosan/siRNA nanoparticle-mediated TNF-alpha knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol Ther. 2009;17(1):162–8.

    Article  CAS  PubMed  Google Scholar 

  23. Ballarín-González B, Dagnaes-Hansen F, Fenton RA, Gao S, Hein S, Dong M, et al. Protection and systemic translocation of siRNA following oral administration of chitosan/siRNA nanoparticles. Mol Ther Nucleic Acids. 2013;2(3):e76.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sang, Myoung, Noh, and, Myung, Ok et al. Pegylated poly-l-arginine derivatives of chitosan for effective delivery of siRNA. J Control Release. 2010;145(2):159–64.

  25. Onishi M, Ichikawa T, Kurozumi K, Date I. Angiogenesis and invasion in glioma. Brain Tumor Pathol. 2011;28(1):13–24.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang L, Song L, Wu J, Yang Y, Zhu X, Hu B et al. Bmi-1 promotes glioma angiogenesis by activating NF-κB signaling. Plos ONE. 2013;8.

  27. Plate KH, Scholz A, Dumont DJ. Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuropathol. 2012;124(6):763–75.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ching-Wen L, Shih-Han K, Pan-Chyr Y. The MiRNAs and epithelial-mesenchymal transition in cancers. Curr Pharm Des. 2014;20(33):489–98.

    Google Scholar 

  29. Quan J, Lu Z, Yu L, Fan C, Liu J. Research progress of exosomes in epithelial-mesenchymal transition. Nan fang yi ke da xue xue bao = Journal of Southern Medical University. 2019;39(3):377–80.

  30. Rubio K, Castillo-Negrete R, Barreto G. Non-coding RNAs and nuclear architecture during epithelial-mesenchymal transition in lung cancer and idiopathic pulmonary fibrosis. Cell Signal. 2020;70:109593.

    Article  CAS  PubMed  Google Scholar 

  31. Craene BD, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13(2):97–110.

    Article  PubMed  Google Scholar 

  32. Nijkamp MM, Span PN, Hoogsteen IJ, Kogel A, Kaanders J, Bussink J. Expression of E-cadherin and vimentin correlates with metastasis formation in head and neck squamous cell carcinoma patients. Radiother Oncol. 2011;99(3):344–8.

    Article  CAS  PubMed  Google Scholar 

  33. Alexander K, Theresa A, Arzu Y, Till PN, Julius W, Sanaz T, et al. Tumor Cell Heterogeneity in Small Cell Lung Cancer (SCLC): Phenotypical and Functional differences associated with epithelial-mesenchymal transition (EMT) and DNA methylation changes. PLoS ONE. 2014;9(6):e100249.

    Article  Google Scholar 

  34. Tsymbal DO, Minchenko DO, Kryvdiuk IV, Riabovol OO, Minchenko OH. Expression of proliferation related transcription factor genes in U87 glioma cells with IRE1 knockdown: upon glucose and glutamine deprivation. Fiziolohichny Zhurnal. 2016;62(1):3–15.

    Article  CAS  Google Scholar 

  35. Parsa AT. A newly identified transcriptional network for mesenchymal transformation of brain tumors: potential targets for therapeutic intervention. World Neurosurg. 2010;73(5):424.

  36. Tso CL, Shintaku P, Chen J, Liu Q, Liu J, Chen Z, et al. Primary glioblastomas express mesenchymal stem-like properties. Mol Cancer Res. 2006;4:607–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No. 82071381).

Author information

Authors and Affiliations

Authors

Contributions

Yiting Zhou and Jiajia Tian contributed equally to this work. Y.Zhou and J.Tian designed the research and drafted the manuscript. All authors participated in the experiments and analysis of data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xudong Zhao.

Ethics declarations

Ethics approval and consent to participate

This is not applicable.

Consent for publication

This is not applicable.

Competing interests

All authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 655 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Tian, J., Zhu, Y. et al. Multilevel chitosan–gelatin particles loaded with P4HA1 siRNA suppress glioma development. Drug Deliv. and Transl. Res. 14, 665–677 (2024). https://doi.org/10.1007/s13346-023-01422-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01422-8

Keywords

Navigation