Skip to main content

Advertisement

Log in

Fucoidan, a brown seaweed polysaccharide in nanodrug delivery

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Fucoidan—a sulfated marine seaweed obtained from brown algae—has raised considerable interest in the scientific community over the last decade as it possesses a wide range of biological activities such as antioxidant, antiviral, anti-inflammatory, anticoagulant, antithrombotic, anticarcinogenic, and immunoregulatory. This polysaccharide finds application as a drug delivery vehicle due to its non-cytotoxicity, biocompatibility, and biodegradability. Besides, nano biomedical systems have used this marine alga for diagnostic and therapeutic purposes. Fucoidan has been extensively studied for use in regenerative medicines, in wound healing, and for sustained drug delivery due to its large biodiversity, cost-effectiveness, and mild procedures for extraction and purification. However, the main concern that limits its application is the variance in its batch-to-batch extraction owing to species type, harvesting, and climatic factors. The current review encloses a compendious overview of the origin, chemical structure, and physicochemical and biological properties of fucoidan and its significant role in nanodrug delivery systems. Special emphasis is given to the recent advances in the use of native/modified fucoidan, its combination with chitosan and metal ions for nanodrug delivery applications, especially in cancer treatment. Additionally, use of fucoidan in human clinical trials as a complementary therapeutic agent is also reviewed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced from Anisha GS, Padmakumari S, Patel AK, Pandey A, Singhania RR. Fucoidan from marine macroalgae: biological actions and applications in regenerative medicine, drug delivery systems and food industry. Bioengineering, 2022;9:472 [Ref. 17]. Copyright (2022) Open Access Article from MDPI, Basel, Switzerland

Fig. 2

Reproduced from Mar. Drugs, Cunha, L; Grenha, A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications, pp. 42 (1–41) [Ref. 38]. Copyright (2016) Open Access Article from MDPI, Basel, Switzerland

Fig. 3

Reproduced from Peng SL, Lai CH, Chu PY, Hsieh JT, Tseng YC, Chiu SC, Lin YH. (2020). Nanotheranostics with the combination of improved targeting, therapeutic effects, and molecular imaging. Front Bioeng Biotechnol. 2020;8:570,490. [Ref. 96]. Copyright (2020) Open Access from Frontiers, Lausanne, Switzerland

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Vijayan SR, Santhiyagu P, Ramasamy R, Arivalagan P, Kumar G, Ethiraj K, Ramaswamy BR. Seaweeds: a resource for marine bionanotechnology. Enzyme Microb Technol. 2016;95:45–57. https://doi.org/10.1016/j.enzmictec.2016.06.009.

    Article  CAS  PubMed  Google Scholar 

  2. Luthuli S, Wu S, Cheng Y, Zheng X, Wu M, Tong H. Therapeuticeffects of fucoidan: a review onrecent studies. Mar Drugs. 2019;17:487. https://doi.org/10.3390/md17090487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zharov VP, Kim J.-W, Curiel DT, Everts M. Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomed: Nantechnol Biol Med. 2005;1:326–345. https://doi.org/10.1016/j.nano.2005.10.006

  4. Qureshi D, Nayak SK, Maji S, Kim D, Banerjee I, Pal K. Carrageenan: a wonder polymer from marine algae for potential drug delivery applications. Curr Pharm Des. 2019;25:1172–86. https://doi.org/10.2174/1381612825666190425190754.

    Article  CAS  PubMed  Google Scholar 

  5. Siepmann J, Siegel RA, Rathbone MJ. Fundamentals and applications of controlled release drug delivery (Vol. 3) New York: Springer 2012. https://doi.org/10.1007/978-1-4614-0881-9

  6. Wang P, Kankala RK, Chen B, Long R, Cai D, Liu Y, Wang S. Poly‐allylamine hydrochloride and fucoidan‐based self‐assembled polyelectrolyte complex nanoparticles for cancer therapeutics. J Biomed Mater Res A, 2019;107:339–347. https://doi.org/10.1002/jbm.a.36526

  7. Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116:2602–2663.https://doi.org/10.1021/acs.chemrev.5b00346

  8. Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N, Bamber R, Barber A, Bartsch I, Berta A. The magnitude of global marine species diversity. Curr Biol. 2012;22:2189–202. https://doi.org/10.1016/j.cub.2012.09.036.

    Article  CAS  PubMed  Google Scholar 

  9. Lira MCB, Santos-Magalhães NS, Nicolas V, Marsaud V, Silva MPC, Ponchel G, Vauthier C. Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles. Eur J Pharm Biopharm. 2011;79:162–70. https://doi.org/10.1016/j.ejpb.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  10. Venkatesan J, Anil S, Kim SK, Shim MS. Seaweed polysaccharide-based nanoparticles: preparation and applications for drug delivery. Polymers, 2016;8:30. https://doi.org/10.3390/polym8020030

  11. Ermakova S, Kusaykin M, Trincone A, Tatiana Z. Are multifunctional marine polysaccharides a myth or reality? Front Chem. 2015;3:39. https://doi.org/10.3389/fchem.2015.00039.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cardoso MJ, Costa RR, Mano JF. Marine origin polysaccharides in drug delivery systems. Mar Drugs. 2016;14:34. https://doi.org/10.3390/md14020034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Manivasagan P, Oh J. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int J Biol. 2016;82:315–27. https://doi.org/10.1016/j.ijbiomac.2015.10.081.

    Article  CAS  Google Scholar 

  14. Oliveira C, Neves NM, Reis RL, Martins A, Silva TH. A review on fucoidan antitumor strategies: from a biological active agent to a structural component of fucoidan-based systems. Carbohydr Polym. 2020;239:116131. https://doi.org/10.1016/j.carbpol.2020.116131

  15. Etman SM, Elnaggar YS, Abdallah OY. Fucoidan, a natural biopolymer in cancer combating: From edible algae to nanocarrier tailoring. Int J Biol Macromol. 2020;147:799–808. https://doi.org/10.1016/j.ijbiomac.2019.11.191.

    Article  CAS  PubMed  Google Scholar 

  16. Tran PH, Duan W, Tran TT. Fucoidan-based nanostructures: a focus on its combination with chitosan and the surface functionalization of metallic nanoparticles for drug delivery. Int J Pharm. 2020;575:118956. https://doi.org/10.1016/j.ijpharm.2019.118956

  17. Anisha GS, Padmakumari S, Patel AK, Pandey A, Singhania RR. Fucoidan from marine macroalgae: biological actions and applications in regenerative medicine, drug delivery systems and food industry. Bioengineering, 2022;9:472.https://doi.org/10.3390/bioengineering9090472

  18. Bo L, Fei L, Xinjun W, Ruixiang Z. Fucoidan: structure and bioactivity. Molecules. 2008;13:1671–95. https://doi.org/10.3390/molecules13081671.

    Article  CAS  Google Scholar 

  19. Holtkamp AD, Kelly S, Ulber R, Lang S. Fucoidans and fucoidanases-focus on techniques for molecular structure elucidation and modification of marine polysaccharides. Appl Microbiol Biotechnol. 2009;82:1–11. https://doi.org/10.1007/s00253-008-1790-x.

    Article  CAS  PubMed  Google Scholar 

  20. Padua D, Rocha E, Gargiulo D, Ramos AA. Bioactive compounds from brown seaweeds: phloroglucinol, fucoxanthin and fucoidan as promising therapeutic agents against breast cancer. Phytochem Lett. 2015;14:91–8. https://doi.org/10.1016/j.phytol.2015.09.007.

    Article  CAS  Google Scholar 

  21. Vo T-S, Kim S-K. Fucoidans as a natural bioactive ingredient for functional foods. J Funct Foods. 2013;5:16–27. https://doi.org/10.1016/j.jff.2012.08.007.

    Article  CAS  Google Scholar 

  22. Wijesinghe WAJP, Jeon Y. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: a review. Carbohydr Polym. 2012;88:13–20. https://doi.org/10.1016/j.carbpol.2011.12.029.

    Article  CAS  Google Scholar 

  23. Athukorala Y, Jung WK, Vasanthan T, Jeon YJ. An anticoagulative polysaccharide from an enzymatic hydrolysate of Ecklonia cava Carbohydr Polym. 2006;66:184–91. https://doi.org/10.1016/j.carbpol.2006.03.002.

    Article  CAS  Google Scholar 

  24. Bilal M, Iqbal H. Marine seaweed polysaccharides-based engineered cues for the modern biomedical sector. Mar Drugs. 2020;18:7. https://doi.org/10.3390/md18010007.

    Article  CAS  Google Scholar 

  25. Usov AI, Zelinski ND. Chemical structures of algal polysaccharides. In: Functional Ingredients from Algae for Foods and Nutraceuticals; H. Domínguez, Ed.; Elsevier Science: Cambridge, UK 2013, pp 45–49. https://doi.org/10.1533/9780857098689.1.23

  26. Berteau O, Mulloy B. Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology. 2003;13:29R-40R. https://doi.org/10.1093/glycob/cwg058.

    Article  CAS  PubMed  Google Scholar 

  27. Guangling J, Guangli Y, Junzeng Z, Ewart HS. Chemical structures and bioactivities of sulfatedpolysaccharides from marine algae. Mar Drugs, 2011;9:196–233. https://doi.org/10.3390/md9020196

  28. Zayed A, Ulber R. Fucoidans: Downstream processes and recent applications. Mar Drugs. 2020;18:170. https://doi.org/10.3390/md18030170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu L, Sun J, Su X, Yu Q, Yu Q, Zhang PA. A review about the development of fucoidan in antitumor activity: progress and challenges. Carbohydr Polym. 2016;154:96–111. https://doi.org/10.1016/j.carbpol.2016.08.005.

    Article  CAS  PubMed  Google Scholar 

  30. Torres MD, Flórez-Fernández N, Simón-Vázquez R, Giménez-Abián JF, Díaz JF, González-Fernández Á, Domínguez H. Fucoidans: the importance of processing on their anti-tumoral properties. Algal Res. 2020;45:101748. https://www.sciencedirect.com/science/article/pii/S2211926419307180

  31. Garcia-Vaquero M, O’Doherty JV, Tiwari BK, Sweeney T, Rajauria G. Enhancing the extraction of polysaccharides and antioxidants from macroalgae using sequential hydrothermal-assisted extractionfollowed by ultrasound and thermal technologies. Mar Drugs. 2019;17:457. https://doi.org/10.3390/md17080457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alboofetileh M, Rezaei M, Tabarsa M, You S, Mariatti F, Cravotto G. Subcritical water extraction as an efficient technique to isolate biologically-active fucoidans from Nizamuddiniazanardinii. Int J Biol Macromol. 2019;128:244–253. https://doi.org/10.1016/j.ijbiomac.2019.01.119

  33. Somasundaram SN, Shanmugam S, Subramanian B, Jaganathan R. Cytotoxic effect of fucoidan extractedfrom Sargassum cinereum on colon cancer cell line HCT-15. Int J Biol Macromol. 2016;91:1215–23. https://doi.org/10.1016/j.ijbiomac.2016.06.084.

    Article  CAS  PubMed  Google Scholar 

  34. Zayed A, Dienemann C, Giese C, Krämer R, Ulber R. An immobilized perylene diimide derivative for fucoidan purification from a crude brown algae extract. Process Biochem. 2018;65:233–8. https://doi.org/10.1016/j.procbio.2017.10.012.

    Article  CAS  Google Scholar 

  35. Zayed A, Ulber R. Fucoidan production: approval key challenges and opportunities. Carbohydr Polym. 2019;211:289–97. https://doi.org/10.1016/j.carbpol.2019.01.105.

    Article  CAS  PubMed  Google Scholar 

  36. Li G, Row KH. Magnetic molecularly imprinted polymers for recognition and enrichment of polysaccharides from seaweed. J Sep Sci. 2017;40:4765–72. https://doi.org/10.1002/jssc.201800329.

    Article  CAS  PubMed  Google Scholar 

  37. Guthrie L, Wolfson S, Kelly L. The human gut chemical landscape predicts microbe mediated biotransformation of foods and drugs. eLife 2019;8:e42866. https://doi.org/10.7554/eLife.42866

  38. Cunha L, Grenha A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar Drugs. 2016;14:42. https://doi.org/10.3390/md14030042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hahn T, Lang S, Ulber R, Muffler K. Novel procedures for the extraction of fucoidan from brown algae. Process Biochem. 2012;47:1691–8. https://doi.org/10.1016/j.procbio.2012.06.016.

    Article  CAS  Google Scholar 

  40. Ale MT, Mikkelsen JD, Meyer AS. Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose containing sulfated polysaccharides from brown seaweeds. Mar Drugs. 2011;9:2106–30. https://doi.org/10.3390/md9102106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Duarte MER, Cardoso MA, Noseda MD, Cerezo AS. Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carbohydr Res. 2001;333:281–93. https://doi.org/10.1016/S0008-6215(01)00149-5.

    Article  CAS  PubMed  Google Scholar 

  42. Kasai A, Arafuka S, Koshiba N, Takahashi D, Toshima K. Systematic synthesis of low-molecular weight fucoidan derivatives and their effect on cancer cells. Org Biomol Chem 2015;13:10556–10568.https://doi.org/10.1039/C5OB01634G

  43. Cho ML, Lee BY, You SG. Relationship between oversulfation and conformation of low and high molecular weight fucoidans and evaluation of their in vitro anticancer activity. Molecules, 2010;16:291–297.https://doi.org/10.3390/molecules16010291

  44. Brandi J, Oliveira EC, Monteiro NK, Vasconcelos AFD, Dekker RFH, Barbosa AM, Silveira JLM, Mourao PAS, da Silva M. de LC. Chemical modification of botryosphaeran: structural characterization and anticoagulant activity of a water-soluble sulfonated (1→3)(1→6)-β-D-glucan. J Microbiol Biotechnol. 2011;21:1036–1042. https://doi.org/10.4014/jmb.1105.05020

  45. Yuan H, Zhang W, Li X, Lu X, Li N, Gao X, Song J. Preparation and in vitro antioxidant activity of κ-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives. Carbohydr Res. 2005;340:685–92. https://doi.org/10.1016/j.carres.2004.12.026.

    Article  CAS  PubMed  Google Scholar 

  46. Liu H, Wang J, Zhang Q, Zhang H. The effect of different substitute groups and molecular weights of fucoidan on neuroprotective and anticomplement activity. Int J Biol Macromol. 2018;113:82–9. https://doi.org/10.1016/j.ijbiomac.2018.02.109.

    Article  CAS  PubMed  Google Scholar 

  47. Suprunchuk VE. Low-molecular-weight fucoidan: chemical modification, synthesis of its oligomeric fragments and mimetics. Carbohydr Res, 2019;485:107806. https://doi.org/10.1016/j.carres.2019.107806

  48. Qiu X, Amarasekara A, Doctor V. Effect of oversulfation on the chemical and biological properties of fucoidan. Carbohydr Polym. 2006;63:224–8. https://doi.org/10.1016/j.carbpol.2005.08.064.

    Article  CAS  Google Scholar 

  49. Xiangdong Q, Amarasekara A, Doctor V. Effect of oversulfation on the chemical and biological properties of fucoidan. Carbohydr Polym. 2006;63:224–228. https://doi.org/10.1016/j.carbpol.2005.08.064

  50. Hwang P-A, Hung Y-L, Phan NN, Hieu B-T-N, Chang P-M, Li K-L, Lin Y-C. The in vitro and in vivo effects of the low molecular weight fucoidan on the bone osteogenic differentiation properties. Cytotechnology, 2016;68:1349–1359.

  51. Zuo T, Li X, Chang Y, Duan G, Yu L, Zheng R, Xue C, Tang Q. Dietary fucoidan of Acaudinamolpadioides and its enzymatically degraded fragments could prevent intestinal mucositis induced by chemotherapy in mice. Food Funct. 2015;6:415–422. https://doi.org/10.1039/C4FO00567H

  52. Park JH, Choi SH, Park SJ, Lee YJ, Park JH, Song PH, Cho CM, Ku SK, Song CH. Promoting wound healing using low molecular weight fucoidan in a full-thickness dermal excision rat model. Mar Drugs. 2017;15:112–5. https://doi.org/10.3390/md15040112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang Z, Liu T, Chen X, You H, Zhang Q, Xue J, Zheng Y, Luo D. Low molecular weight fucoidan ameliorates hind limb ischemic injury in type 2 diabetic rats. J Ethnopharmacol. 2018;210:434–42. https://doi.org/10.1016/j.jep.2017.09.014.

    Article  CAS  PubMed  Google Scholar 

  54. Ustyuzhanina NE, Bilan MI, Ushakova NA, Usov AI, Kiselevskiy MV, Nifantiev NE. Fucoidans: pro- or antiangiogenic agents? Glycobiology, 2014;24:1265–1274. https://doi.org/10.1093/glycob/cwu063

  55. Kim K-T, Rioux L-E, Turgeon SL. Molecular weight and sulfate content modulate the inhibition of α-amylase by fucoidan relevant for type 2 diabetes management. Pharma Nutrition. 2015;3:108–14. https://doi.org/10.1016/j.phanu.2015.02.001.

    Article  CAS  Google Scholar 

  56. Rioux L, Turgeon SL, Beaulieu M. Rheological characterisation of polysaccharides extracted from brown seaweeds. J Sci Food Agric. 2007;87:1630–1638. https://doi.org/10.1016/j.carbpol.2007.01.009

  57. Jung-Bum L, Hayashi K, Hashimoto M, Nakano T, Hayashi T. Novel antiviral fucoidan from Sporophyll of Undaria pinnatifida (Mekabu). Chem Pharm Bull. 2004;52:1091–4. https://doi.org/10.1248/cpb.52.1091.

    Article  Google Scholar 

  58. Silva TH, Alves A, Popa EG, Reys LL, Gomes ME, Sousa RA, Silva SS, Mano JF, Reis RL. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter. 2012;2:278–89. https://doi.org/10.4161/biom.22947.

    Article  PubMed  PubMed Central  Google Scholar 

  59. George A, Shah PA, Shrivastav PS. Natural biodegradable polymers based nano-formulations for drug delivery: a review. Int J Pharm. 2019;561:244–64. https://doi.org/10.1016/j.ijpharm.2019.03.011.

    Article  CAS  PubMed  Google Scholar 

  60. Alkilany AM, Zhu L, Weller H, Mews A, Parak WJ, Barz M, Feliu N. Ligand density on nanoparticles: a parameter with critical impact on nanomedicine. Adv Drug Deliv Rev. 2019;143:22–36. https://doi.org/10.1016/j.addr.2019.05.010.

    Article  CAS  PubMed  Google Scholar 

  61. Lee H. Kim JS, Kim E. Fucoidan from seaweed Fucus vesiculosus inhibits migration and invasion of human lung cancer cell via PI3K-Akt-mTOR pathways. PloS one, 2012;7:e50624. https://doi.org/10.1371/journal.pone.0050624

  62. Zhang W, Oda T, Yu Q, Jin JO. Fucoidan from Macrocystis pyrifera has powerful immune-modulatory effects compared to three other fucoidans. Mar Drugs, 2015;13:1084–1104. https://doi.org/10.3390/md13031084

  63. Teruya T, Tatemoto H, Konishi T, Tako M. Structural characteristics and in vitro macrophage activation of acetyl fucoidan from Cladosiphonokamuranus. Glycoconj J. 2009;26:1019–1028. https://doi.org/10.1007/s10719-008-9221-x

  64. Lee KW, Jeong D, Na K. Doxorubicin loading fucoidan acetate nanoparticles for immune and chemotherapy in cancer treatment. Carbohydr Polym. 2013;94:850–6. https://doi.org/10.1016/j.carbpol.2013.02.018.

    Article  CAS  PubMed  Google Scholar 

  65. Jafari M, Sriram V, Xu Z, Harris GM, Lee JY. Fucoidan-doxorubicin nanoparticles targeting P-selectin for effective breast cancer therapy. Carbohydr Polym. 2020;249:116837. https://doi.org/10.1016/j.carbpol.2020.116837

  66. Liu X, Liu X, Kusaykin MI, Zhang M, Bai X, Cui T, Shi Y, Liu C, Jia A. Structural characterization of a P-selectin and EGFR dual-targeting fucoidan from Sargassum fusiforme. Int J Biol Macromol. 2022;199:86–95. https://doi.org/10.1016/j.ijbiomac.2021.12.135.

    Article  CAS  PubMed  Google Scholar 

  67. Guo R, Deng M, He X, Li, M, Li J, He P, Liu H, Li M, Zhang Z, He Q. Fucoidan-functionalized activated platelet-hitchhiking micelles simultaneously track tumor cells and remodel the immunosuppressive microenvironment for efficient metastatic cancer treatment. Acta Pharm Sin B, 2022;12:467–482.https://doi.org/10.1016/j.apsb.2021.05.012

  68. Deepika MS, Thangam R, Sheena TS, Sasirekha R, Sivasubramanian S, Babu MD, Jeganathan K, Thirumurugan R. A novel rutin-fucoidan complex based phytotherapy for cervical cancer through achieving enhanced bioavailability and cancer cell apoptosis. Biomed Pharmacother. 2019;109:1181–95. https://doi.org/10.1016/j.biopha.2018.10.178.

    Article  CAS  PubMed  Google Scholar 

  69. Etman SM, Abdallah OY, Elnaggar YS. Novel fucoidan based bioactive targeted nanoparticles from Undaria pinnatifida for treatment of pancreatic cancer. Int J Biol Macromol. 2020;145:390–401. https://doi.org/10.1016/j.ijbiomac.2019.12.177.

    Article  CAS  PubMed  Google Scholar 

  70. Oliveira C, Neves NM, Reis RL, Martins A, Silva TH. Gemcitabine delivered by fucoidan/chitosan nanoparticles presents increased toxicity over human breast cancer cells. Nanomedicine. 2018;13:2037–50. https://doi.org/10.2217/nnm-2018-0004.

    Article  CAS  PubMed  Google Scholar 

  71. Coutinho AJ, Lima SAC, Afonso CM, Reis S. Mucoadhesive and pH responsive fucoidan-chitosan nanoparticles for the oral delivery of methotrexate. Int J Biol Macromol. 2020;158:180–8. https://doi.org/10.1016/j.ijbiomac.2020.04.233.

    Article  CAS  PubMed  Google Scholar 

  72. Lu K-Y, Li R, Hsu C-H, Lin C-W, Chou S-C, Tsai M-L, Mi F-L. Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohydr Polym. 2017;165:410–20. https://doi.org/10.1016/j.carbpol.2017.02.065.

    Article  CAS  PubMed  Google Scholar 

  73. Liu Q, Chen J, Qin Y, Jiang B, Zhang T. Zein/fucoidan-based composite nanoparticles for the encapsulation of pterostilbene: preparation, characterization, physicochemical stability, and formation mechanism. Int J Biol Macromol. 2020;158:461–470. https://doi.org/10.1016/j.ijbiomac.2020.04.128

  74. Kang S, Kang K, Chae A, Kim YK, Jang H, Min DH. Fucoidan-coated coral-like Pt nanoparticles for computed tomography-guided highly enhanced synergistic anticancer effect against drug-resistant breast cancer cells. Nanoscale, 2019;11:15173–15183.

  75. Guo C, Su Y, Cheng Z, Chen Q, Guo H, Kong M, Chen, D. Novel ROS-responsive marine biomaterial fucoidan nanocarriers with AIE effect and chemodynamic therapy. Int J Biol Macromol. 2022;202:112–121. https://doi.org/10.1016/j.ijbiomac.2022.01.060

  76. Li L, Wang B, Zhang Q, Song P, Jiang T, Zhao X. Hypoxia responsive fucoidan-based micelles for oxidative stress-augmented chemotherapy. Eur Polym. 2022;111340. https://doi.org/10.1016/j.eurpolymj.2022.111340

  77. Chodari L, Dilsiz Aytemir M, Vahedi P, Alipour M, Vahed SZ, Khatibi SMH, Elham A, Mohammadreza A, Eftekhari A. Targeting mitochondrial biogenesis with polyphenol compounds. Oxid Med Cell Longev. 2021. https://doi.org/10.1155/2021/4946711.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fang L, Lin H, Wu Z, Wang Z, Fan X, Cheng Z, Xiaoya H, Chen D. In vitro/vivo evaluation of novel mitochondrial targeting charge-reversal polysaccharide-based antitumor nanoparticle. Carbohydr Polym. 2020;234:115930. https://doi.org/10.1016/j.carbpol.2020.115930

  79. Eftekhari A, Dizaj SM, Chodari L, Sunar S, Hasanzadeh A, Ahmadian E, Hasanzadeh M. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed Pharmacother. 2018;103:1018–27. https://doi.org/10.1016/j.biopha.2018.04.126.

    Article  CAS  PubMed  Google Scholar 

  80. Silva MMCL, dos Santos Lisboa L, Paiva WS, Batista LANC, Luchiari AC, Rocha HAO, Camara RBG. Comparison of in vitro and in vivo antioxidant activities of commercial fucoidans from Macrocystis pyrifera, Undaria pinnatifida, and Fucus vesiculosus. Int J Biol Macromol. 2022;216:757–767. https://doi.org/10.1016/j.ijbiomac.2022.07.110

  81. Koh HSA, Lu J, Zhou W. Structure characterization and antioxidant activity of fucoidan isolated from Undaria pinnatifida grown in New Zealand. Carbohydr Polym. 2019;212:178–185. https://doi.org/10.1016/j.carbpol.2019.02.040

  82. Yu J, Li Q, Wu J, Yang X, Yang S, Zhu W, Liu Y, Tang W, Nie S, Hassouna A, Whute WL, Zhao Y, Lu J. Fucoidan extracted from sporophyll of Undaria pinnatifida grown in Weihai, China–Chemical Composition and Comparison of Antioxidant Activity of Different Molecular Weight Fractions. Front Nutr. 2021;8:636930. https://doi.org/10.3389/fnut.2021.636930

  83. Lim S, Choi JI, Park H. Antioxidant activities of fucoidan degraded by gamma irradiation and acidic hydrolysis. Radiat Phys Chem. 2015;109:23–26.https://doi.org/10.1016/j.radphyschem.2014.12.008

  84. Wu SY, Parasuraman V, Arunagiri V, Gunaseelan S, Chou HY, Anbazhagan R, Lai JY, Prasad R. Radioprotective effect of self-assembled low molecular weight Fucoidan–Chitosan nanoparticles. Int J Pharm. 2020;579:119161. https://doi.org/10.1016/j.ijpharm.2020.119161

  85. Huang YC, Li RY, Chen JY, Chen JK. Biphasic release of gentamicin from chitosan/fucoidan nanoparticles for pulmonary delivery. Carbohydr Polym. 2016;138:114–22. https://doi.org/10.1016/j.carbpol.2015.11.072.

    Article  CAS  PubMed  Google Scholar 

  86. Barbosa AI, Costa Lima SA, Reis S. Application of pH-responsive fucoidan/chitosan nanoparticles to improve oral quercetin delivery. Molecules. 2019;24:346. https://doi.org/10.3390/molecules24020346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91. https://doi.org/10.1038/nrd2803.

    Article  CAS  PubMed  Google Scholar 

  88. Schumacker PT. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell. 2006;10:175–6. https://doi.org/10.1016/j.ccr.2006.08.015.

    Article  CAS  PubMed  Google Scholar 

  89. Choi DG, Venkatesan J, Shim MS. Selective anticancer therapy using pro-oxidant drug-loaded chitosan–fucoidan nanoparticles. Int J Mol Sci. 2019;20:3220. https://doi.org/10.3390/ijms20133220

  90. Venkatesan J, Murugan SS, Seong GH. Fucoidan-based nanoparticles: preparations and applications. Int J Biol Macromol. 2022;217:652–667.https://doi.org/10.1016/j.ijbiomac.2022.07.068

  91. Pinto RJ, Bispo D, Vilela C, Botas AM, Ferreira RA, Menezes, AC, Campos F, Oliveira H, Abreu MH, Santos SAO, Freire, CS. One-minute synthesis of size-controlled fucoidan-gold nanosystems: Antitumoral activity and dark field imaging. Materials, 2020;13:1076. https://doi.org/10.3390/ma13051076

  92. Cheng TM, Li R, Kao YCJ, Hsu CH, Chu HL, Lu KY, Changou CA, Chang CC, Chang LH, Tsai ML, Mi FL. Synthesis and characterization of Gd-DTPA/fucoidan/peptide complex nanoparticle and in vitro magnetic resonance imaging of inflamed endothelial cells. Mater Sci Eng C, 2020;114:111064. https://doi.org/10.1016/j.msec.2020.111064

  93. Manivasagan P, Bharathiraja S, Bui NQ, Jang B, Oh YO, Lim IG, Oh J. Doxorubicin-loaded fucoidan capped gold nanoparticles for drug delivery and photoacoustic imaging. Int J Biol Macromol. 2016;91:578–88. https://doi.org/10.1016/j.ijbiomac.2016.06.007.

    Article  CAS  PubMed  Google Scholar 

  94. Jang B, Moorthy MS, Manivasagan P, Xu L, Song K, Lee KD, Kwak M, Oh J, Jin JO. Fucoidan-coated CuS nanoparticles for chemo-and photothermal therapy against cancer. Oncotarget, 2018;9:12649.

  95. Costa B, Corrêa LB, Silva PM, de Sá, YAPJ, Guimarães FV, Alencar L MR, Simões RL, Helal-Neto E, Ricci-Junior E, Maria das G, Muller de Oliveira H, Rosas EC, Santos-Oliveira R. Using pure Fucoidan and radiolabeled Fucoidan (99mTc-Fucoidan) as a new agent for inflammation diagnosis and therapy. Food Hydrocoll. 2022;2:100049. https://doi.org/10.1016/j.fhfh.2021.100049

  96. Peng SL, Lai CH, Chu PY, Hsieh JT, Tseng YC, Chiu SC, Lin YH. (2020). Nanotheranostics with the combination of improved targeting, therapeutic effects, and molecular imaging. Front Bioeng Biotechnol. 2020;8:570490. https://doi.org/10.3389/fbioe.2020.570490

  97. Huang YC, Liu TJ. Mobilization of mesenchymal stem cells by stromal cell-derived factor-1 released from chitosan/tripolyphosphate/fucoidan nanoparticles. Acta Biomater. 2012;8:1048–56. https://doi.org/10.1016/j.actbio.2011.12.009.

    Article  CAS  PubMed  Google Scholar 

  98. Wu SJ, Don TM, Lin CW, Mi FL. Delivery of berberine using chitosan/fucoidan-taurine conjugate nanoparticles for treatment of defective intestinal epithelial tight junction barrier. Mar Drugs. 2014;12:5677–97. https://doi.org/10.3390/md12115677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen CH, Lin YS, Wu SJ, Mi FL. Mutlifunctional nanoparticles prepared from arginine-modified chitosan and thiolated fucoidan for oral delivery of hydrophobic and hydrophilic drugs. Carbohydr Polym. 2018;193:163–72. https://doi.org/10.1016/j.carbpol.2018.03.080.

    Article  CAS  PubMed  Google Scholar 

  100. Lee MC, Huang YC. Soluble eggshell membrane protein-loaded chitosan/fucoidan nanoparticles for treatment of defective intestinal epithelial cells. Int J Biol Macromol. 2019;131:949–58. https://doi.org/10.1016/j.ijbiomac.2019.03.113.

    Article  CAS  PubMed  Google Scholar 

  101. Ahmadian E, Eftekhari A, Kavetskyy T, Khosroushahi AY, Turksoy VA, Khalilov R. Effects of quercetin loaded nanostructured lipid carriers on the paraquat-induced toxicity in human lymphocytes. Pestic Biochem Physiol 2020;167:104586. https://doi.org/10.1016/j.pestbp.2020.104586

  102. Hasanzadeh A, Gholipour B, Rostamnia S, Eftekhari A, Tanomand A, Khaksar S, Khalilov R. Biosynthesis of AgNPs onto the urea-based periodic mesoporous organosilica (AgxNPs/Ur-PMO) for antibacterial and cell viability assay. J Colloid Interface Sci. 2021;585:676–83. https://doi.org/10.1016/j.jcis.2020.10.047.

    Article  CAS  PubMed  Google Scholar 

  103. Elbi S, Nimal TR, Rajan VK, Baranwal G, Biswas R, Jayakumar R, Sathianarayanan S. Fucoidan coated ciprofloxacin loaded chitosan nanoparticles for the treatment of intracellular and biofilm infections of Salmonella. Colloids Surf B Biointerfaces. 2017;160:40–7. https://doi.org/10.1016/j.colsurfb.2017.09.003.

    Article  CAS  Google Scholar 

  104. Tsai LC, Chen CH, Lin CW, Ho YC, Mi FL. Development of mutlifunctional nanoparticles self-assembled from trimethyl chitosan and fucoidan for enhanced oral delivery of insulin. Int J Biol Macromol. 2019;126:141–150. https://doi.org/10.1016/j.ijbiomac.2018.12.182

  105. Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, Middelberg AP. Nanoparticle vaccines. Vaccine. 2014;32:327–37. https://doi.org/10.1016/j.vaccine.2013.11.069.

    Article  PubMed  Google Scholar 

  106. Chuang CC, Tsai MH, Yen HJ, Shyu HF, Cheng KM, Chen XA, Chen CC, Young JJ, Kau JH. A fucoidan-quaternary chitosan nanoparticle adjuvant for anthrax vaccine as an alternative to CpG oligodeoxynucleotides. Carbohydr Polym. 2020;229:115403. https://doi.org/10.1016/j.carbpol.2019.115403

  107. Shanmugapriya K, Kim H, Kang HW. Fucoidan-loaded hydrogels facilitate wound healing using photodynamic therapy by in vitro and in vivo evaluation. Carbohydr Polym. 2020;247:116624. https://doi.org/10.1016/j.carbpol.2020.116624

  108. Wardani G, Nugraha J, Mustafa M, Sudjarwo SA. Antioxidative stress and anti-inflammatory activity of fucoidan nanoparticles against nephropathy of streptozotocin-induced diabetes in rats. Evid Based Complementary Altern Med. 2022. https://doi.org/10.1155/2022/3405871.

    Article  Google Scholar 

  109. Gu X, Liu Z, Tai YF, Zhou LY, Liu K, Kong D, Midgley AC, Zuo XC. Hydrogel and nanoparticle carriers for kidney disease therapy: trends and recent advancements. Prog Biomed Eng. 2022;4:022006. https://doi.org/10.1088/2516-1091/ac6e18

  110. Shu G, Lu C, Wang Z, Du Y, Xu X, Xu M, Zhao Z, Chen M, Dai Y, Weng Q, Fang, S. Fucoidan-based micelles as P-selectin targeted carriers for synergistic treatment of acute kidney injury. Nanomedicine 2021;32:102342. https://doi.org/10.1016/j.nano.2020.102342

  111. Lin Y, Qi X, Liu H, Xue K, Xu S, Tian Z. The anti-cancer effects of fucoidan: a review of both in vivo and in vitro investigations. Cancer Cell Int. 2020;20:1–14. https://doi.org/10.1186/s12935-020-01233-8

  112. Citkowska A, Szekalska M, Winnicka K. Possibilities of fucoidan utilization in the development of pharmaceutical dosage forms. Mar Drugs, 2019;17:458. https://doi.org/10.3390/md17080458

  113. Tokita Y, Nakajima K, Mochida H, Iha M, Nagamine T. Development of a fucoidan-specific antibody and measurement of fucoidan in serum and urine by sandwich ELISA. Biosci Biotechnol Biochem. 2010;0912261792–0912261792. https://doi.org/10.1271/bbb.90705

  114. Kwak JY. Fucoidan as a marine anticancer agent in preclinical development. Mar Drugs. 2014;12:851–70. https://doi.org/10.3390/md12020851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ikeguchi M, Yamamoto M, Arai Y, Maeta Y, Ashida K, Katano K, Miki Y, Kimura T. Fucoidan reduces the toxicities of chemotherapy for patients with unresectable advanced or recurrent colorectal cancer. Oncol Lett. 2011;2:319–22. https://doi.org/10.3892/ol.2011.254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tocaciu S, Oliver LJ, Lowenthal RM, Peterson GM, Patel R, Shastri M, McGuinness G, Olesen I, Fitton JH. The effect of Undaria pinnatifida fucoidan on the pharmacokinetics of letrozole and tamoxifen in patients with breast cancer. Integr Cancer Ther. 2018;17:99–105. https://doi.org/10.1177/1534735416684014.

    Article  CAS  PubMed  Google Scholar 

  117. Clinical Trials of Oligo Fucoidan. Available online: https://clinicaltrials.gov/ct2/show/ NCT03130829

  118. Takahashi H, Kawaguchi M, Kitamura K, Narumiya S, Kawamura M, Tengan I, Nishimoto S, Hanamure Y, Majima Y, Tsubura S, Teruya K, Shirahata S. An exploratory study on the anti-inflammatory effects of fucoidan in relation to quality of life in advanced cancer patients. Integr Cancer Ther. 2018;17:282–91. https://doi.org/10.1177/1534735417692097.

    Article  CAS  PubMed  Google Scholar 

  119. Tsai HL, Tai CJ, Huang CW, Chang FR, Wang JY. Efficacy of low-molecular-weight fucoidan as a supplemental therapy in metastatic colorectal cancer patients: a double-blind randomized controlled trial. Mar Drugs. 2017;15:122. https://doi.org/10.3390/md15040122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Myers SP, Mulder AM, Baker DG, Robinson SR, Rolfe MI, Brooks L, Fitton JH. Effects of fucoidan from Fucus vesiculosus in reducing symptoms of osteoarthritis: a randomized placebo-controlled trial. Biol.: Targets Ther. 2016;10:81. 10.2147%2FBTT.S95165

  121. Mori N, Nakasone K, Tomimori K, Ishikawa C. Beneficial effects of fucoidan in patients with chronic hepatitis c virus infection. World J Gastroenterol. 2012;18: 2225–2230.

  122. Chollet L, Saboural P, Chauvierre C, Villemin JN, Letourneur D, Chaubet F. Fucoidans in nanomedicine. Mar Drugs. 2016;14:145. https://doi.org/10.3390/md14080145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Krylov VB, Kaskova ZM, Vinnitskiy DZ, Ustyuzhanina NE, Grachev AA, Chizhov AO, Nifantiev NE. Acid-promoted synthesis of per-O-sulfated fucooligosaccharides related to fucoidan fragments. Carbohydr Res. 2011;346:540–50. https://doi.org/10.1016/j.carres.2011.01.005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Department of Chemistry, Gujarat University, Ahmedabad, Gujarat, India, for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

Archana George: Resources, data collection, writing—original draft. Pranav S Shrivastav: Conceptualization, supervision, writing—critical reviewing and editing.

Corresponding author

Correspondence to Pranav S. Shrivastav.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Yes.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, A., Shrivastav, P.S. Fucoidan, a brown seaweed polysaccharide in nanodrug delivery. Drug Deliv. and Transl. Res. 13, 2427–2446 (2023). https://doi.org/10.1007/s13346-023-01329-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01329-4

Keywords

Navigation