Skip to main content

Advertisement

Log in

Nanomedicine in therapeutic warfront against estrogen receptor–positive breast cancer

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Breast cancer (BC) is the most frequently diagnosed malignancy in women worldwide. Almost 70–80% of cases of BC are curable at the early non-metastatic stage. BC is a heterogeneous disease with different molecular subtypes. Around 70% of breast tumors exhibit estrogen-receptor (ER) expression and endocrine therapy is used for the treatment of these patients. However, there are high chances of recurrence in the endocrine therapy regimen. Though chemotherapy and radiation therapy have substantially improved survival rates and treatment outcomes in BC patients, there is an increased possibility of the development of resistance and dose-limiting toxicities. Conventional treatment approaches often suffer from low bioavailability, adverse effects due to the non-specific action of chemotherapeutics, and low antitumor efficacy. Nanomedicine has emerged as a conspicuous strategy for delivering anticancer therapeutics in BC management. It has revolutionized the area of cancer therapy by increasing the bioavailability of the therapeutics and improving their anticancer efficacy with reduced toxicities on healthy tissues. In this article, we have highlighted various mechanisms and pathways involved in the progression of ER-positive BC. Further, different nanocarriers delivering drugs, genes, and natural therapeutic agents for surmounting BC are the spotlights of this article.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022.

  3. Tong CW, Wu M, Cho W, To KK. Recent advances in the treatment of breast cancer. Front Oncol. 2018;8:227.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Siegle R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.

    Article  Google Scholar 

  5. Ma Q, Gao Y, Xu P, Li K, Xu X, Gao J, et al. Atorvastatin inhibits breast cancer cells by downregulating PTEN/AKT pathway via promoting ras homolog family member B (RhoB). Biomed Res Int. 2019;2019.

  6. Millikan RC, Newman B, Tse C-K, Moorman PG, Conway K, Smith LV, et al. Epidemiology of basal-like breast cancer. Breast Cancer Res Treat. 2008;109(1):123–39.

    Article  PubMed  Google Scholar 

  7. Malhotra GK, Zhao X, Band H, Band V. Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther. 2010;10(10):955–60.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lumachi F, Brunello A, Maruzzo M, Basso U, Mm BS. Treatment of estrogen receptor-positive breast cancer. Curr Med Chem. 2013;20(5):596–604.

    Article  CAS  PubMed  Google Scholar 

  9. Gil EMC. Targeting the PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer. Cancer Treat Rev. 2014;40(7):862–71.

    Article  Google Scholar 

  10. Andrahennadi S, Sami A, Manna M, Pauls M, Ahmed S. Current landscape of targeted therapy in hormone receptor-positive and HER2-negative breast cancer. Curr Oncol. 2021;28(3):1803–22.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cardoso F, Senkus E, Costa A, Papadopoulos E, Aapro M, André F, et al. 4th ESO–ESMO international consensus guidelines for advanced breast cancer (ABC 4). Ann Oncol. 2018;29(8):1634–57.

    Article  CAS  PubMed  Google Scholar 

  12. Khairnar P, Handa M, Shukla R. Nanocrystals: an approachable delivery system for anticancer therapeutics. Curr Drug Metab. 2022.

  13. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–87.

    Article  CAS  PubMed  Google Scholar 

  14. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22.

    Article  CAS  PubMed  Google Scholar 

  15. Singh PK, Chibh S, Dube T, Chauhan VS, Panda JJ. Arginine-α, β-dehydrophenylalanine dipeptide nanoparticles for pH-responsive drug delivery. Pharm Res. 2018;35(2):1–11.

    Article  Google Scholar 

  16. Patil RM, Deshpande PP, Aalhate M, Gananadhamu S, Singh PK. An update on sophisticated and advanced analytical tools for surface characterization of nanoparticles. Surf Interface. 2022:102165.

  17. Singh A, Handa M, Ruwali M, Flora S, Shukla R, Kesharwani P. Nanocarrier mediated autophagy: an emerging trend for cancer therapy. Process Biochem. 2021;109:198–206.

    Article  CAS  Google Scholar 

  18. Siersbæk R, Kumar S, Carroll JS. Signaling pathways and steroid receptors modulating estrogen receptor α function in breast cancer. Genes Dev. 2018;32(17–18):1141–54.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yaşar P, Ayaz G, User SD, Güpür G, Muyan M. Molecular mechanism of estrogen–estrogen receptor signaling. Reprod Med Biol. 2017;16(1):4–20.

    Article  PubMed  Google Scholar 

  20. Osborne CK, Schiff R, Fuqua SA, Shou J. Estrogen receptor: current understanding of its activation and modulation. Clin Cancer Res. 2001;7(12):4338s-s4342.

    CAS  PubMed  Google Scholar 

  21. Kundu S, Ali MA, Handin N, Padhan N, Larsson J, Karoutsou M, et al. Linking FOXO3, NCOA3, and TCF7L2 to Ras pathway phenotypes through a genome-wide forward genetic screen in human colorectal cancer cells. Genome Med. 2018;10(1):1–13.

    Article  Google Scholar 

  22. Cleator SJ, Ahamed E, Coombes RC, Palmieri C. A 2009 Update on the treatment of patients with hormone receptor—positive breast cancer. Clin Breast Cancer. 2009;9:S6–17.

    Article  CAS  PubMed  Google Scholar 

  23. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron J, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100(14):8418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cardoso F, Costa A, Senkus E, Aapro M, André F, Barrios C, et al. 3rd ESO–ESMO international consensus guidelines for advanced breast cancer (ABC 3). Breast. 2017;31:244–59.

    Article  CAS  PubMed  Google Scholar 

  25. Ring A, Dowsett M. Mechanisms of tamoxifen resistance. Endocr Relat Cancer. 2004;11(4):643–58.

    Article  CAS  PubMed  Google Scholar 

  26. Nelson LR, Bulun SE. Estrogen production and action. J Am Acad Dermatol. 2001;45(3):S116–24.

    Article  CAS  PubMed  Google Scholar 

  27. Evans CT, Ledesma DB, Schulz TZ, Simpson ER, Mendelson CR. Isolation and characterization of a complementary DNA specific for human aromatase-system cytochrome P-450 mRNA. Proc Natl Acad Sci. 1986;83(17):6387–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Altundag K, Ibrahim NK. Aromatase inhibitors in breast cancer: an overview. Oncologist. 2006;11(6):553–62.

    Article  CAS  PubMed  Google Scholar 

  29. Pistelli M, Della Mora A, Ballatore Z, Berardi R. Aromatase inhibitors in premenopausal women with breast cancer: the state of the art and future prospects. Curr Oncol. 2018;25(2):168–75.

    Article  Google Scholar 

  30. Castaneda CA, Cortes-Funes H, Gomez HL, Ciruelos EM. The phosphatidyl inositol 3-kinase/AKT signaling pathway in breast cancer. Cancer Metastasis Rev. 2010;29(4):751–9.

    Article  CAS  PubMed  Google Scholar 

  31. Lee JJ, Loh K, Yap Y-S. PI3K/Akt/mTOR inhibitors in breast cancer. Cancer Biol Med. 2015;12(4):342.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655–7.

    Article  CAS  PubMed  Google Scholar 

  33. Baselga J. Targeting the phosphoinositide-3 (PI3) kinase pathway in breast cancer. Oncologist. 2011;16:12–9.

    Article  PubMed  Google Scholar 

  34. Zhao L, Vogt PK. Class I PI3K in oncogenic cellular transformation. Oncogene. 2008;27(41):5486–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kenerson HL, Aicher LD, True LD, Yeung RS. Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors. Can Res. 2002;62(20):5645–50.

    CAS  Google Scholar 

  36. Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta (BBA)-Proteins Proteom. 2010;1804(3):433–9.

    Article  CAS  Google Scholar 

  37. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35.

    Article  CAS  PubMed  Google Scholar 

  38. Yamnik RL, Digilova A, Davis DC, Brodt ZN, Murphy CJ, Holz MK. S6 kinase 1 regulates estrogen receptor α in control of breast cancer cell proliferation. J Biol Chem. 2009;284(10):6361–9.

    Article  CAS  PubMed  Google Scholar 

  39. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098–101.

    Article  CAS  PubMed  Google Scholar 

  40. Miller TW, Balko JM, Arteaga CL. Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J Clin Oncol. 2011;29(33):4452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. O’leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol. 2016;13(7):417–30.

    Article  PubMed  Google Scholar 

  42. Matutino A, Amaro C, Verma S. CDK4/6 inhibitors in breast cancer: beyond hormone receptor-positive HER2-negative disease. Ther Adv in Med Oncol. 2018;10:1758835918818346.

    Article  Google Scholar 

  43. Aggelis V, Johnston SR. Advances in endocrine-based therapies for estrogen receptor-positive metastatic breast cancer. Drugs. 2019;79(17):1849–66.

    Article  CAS  PubMed  Google Scholar 

  44. Rugo H, Finn R, Diéras V, Ettl J, Lipatov O, Joy A, et al. Palbociclib plus letrozole as first-line therapy in estrogen receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer with extended follow-up. Breast Cancer Res Treat. 2019;174(3):719–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Talluri SV, Kuppusamy G, Karri VVSR, Tummala S, Madhunapantula SV. Lipid-based nanocarriers for breast cancer treatment–comprehensive review. Drug Deliv. 2016;23(4):1291–305.

    Article  CAS  PubMed  Google Scholar 

  46. Mahajan S, Aalhate M, Guru SK, Singh PK. Nanomedicine as a magic bullet for combating lymphoma. J Control Release. 2022;347:211–36.

    Article  CAS  PubMed  Google Scholar 

  47. Cleator S, Parton M, Dowsett M. The biology of neoadjuvant chemotherapy for breast cancer. Endocr Relat Cancer. 2002;9(3):183–95.

    Article  CAS  PubMed  Google Scholar 

  48. Charfare H, Limongelli S, Purushotham A. Neoadjuvant chemotherapy in breast cancer. Br J Surg. 2005;92(1):14–23.

    Article  CAS  PubMed  Google Scholar 

  49. Koch U, Krause M, Baumann M. Cancer stem cells at the crossroads of current cancer therapy failures—radiation oncology perspective. Seminars in cancer biology: Elsevier; 2010. p. 116–24.

  50. Mayo CS, Urie MM, Fitzgerald TJ. Hybrid IMRT plans—concurrently treating conventional and IMRT beams for improved breast irradiation and reduced planning time. Int J Rad Oncol Biol Phys. 2005;61(3):922–32.

    Article  Google Scholar 

  51. Polisena C. Nutrition concerns with the radiation therapy patient. The Clinical Guide to Oncology Nutrition. 2000:70–8.

  52. Aebi S, Davidson T, Gruber G, Cardoso F. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2011;22:vi12–24.

    Article  PubMed  Google Scholar 

  53. Aapro MS. Adjuvant therapy of primary breast cancer: a review of key findings from the 7th international conference, St. Gallen, February 2001. Oncologist. 2001;6(4):376–85.

    Article  CAS  PubMed  Google Scholar 

  54. Lumachi F, Luisetto G, MM Basso S, Basso U, Brunello A, Camozzi V. Endocrine therapy of breast cancer. Curr Med Chem. 2011;18(4):513–22.

    Article  CAS  PubMed  Google Scholar 

  55. El Sayed R, El Jamal L, El Iskandarani S, Kort J, Abdel Salam M, Assi H. Endocrine and targeted therapy for hormone-receptor-positive, HER2-negative advanced breast cancer: Insights to sequencing treatment and overcoming resistance based on clinical trials. Front Oncol. 2019;9:510.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gu G, Dustin D, Fuqua SA. Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment. Curr Opin Pharmacol. 2016;31:97–103.

    Article  CAS  PubMed  Google Scholar 

  57. Afzal M, Alharbi KS, Alruwaili NK, Al-Abassi FA, Al-Malki AAL, Kazmi I, et al. Nanomedicine in treatment of breast cancer–a challenge to conventional therapy. Seminars in cancer biology: Elsevier; 2021. p. 279–92.

  58. Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev. 2022;180:114034.

    Article  CAS  PubMed  Google Scholar 

  59. Maji I, Mahajan S, Sriram A, Medtiya P, Vasave R, Khatri DK, et al. Solid self emulsifying drug delivery system: superior mode for oral delivery of hydrophobic cargos. J Control Release. 2021;337:646–60.

    Article  CAS  PubMed  Google Scholar 

  60. Alasvand N, Urbanska AM, Rahmati M, Saeidifar M, Gungor-Ozkerim PS, Sefat F, et al. Therapeutic nanoparticles for targeted delivery of anticancer drugs. Multifunctional systems for combined delivery, biosensing and diagnostics. 2017:245–59.

  61. Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  62. Perrault SD, Chan WC. In vivo assembly of nanoparticle components to improve targeted cancer imaging. Proc Natl Acad Sci. 2010;107(25):11194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ernsting MJ, Murakami M, Roy A, Li S-D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release. 2013;172(3):782–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stylianopoulos T. EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors. Ther Deliv. 2013;4(4):421–3.

    Article  CAS  PubMed  Google Scholar 

  65. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Part 1):6387–92.

    CAS  PubMed  Google Scholar 

  66. Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60(15):1615–26.

    Article  CAS  PubMed  Google Scholar 

  67. Kumar S, Li C. Targeting of vasculature in cancer and other angiogenic diseases. Trends Immunol. 2001;22(3):129.

    Article  CAS  PubMed  Google Scholar 

  68. Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8(8):579–91.

    Article  CAS  PubMed  Google Scholar 

  69. Kremer C, Breier G, Risau W, Plate KH. Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Can Res. 1997;57(17):3852–9.

    CAS  Google Scholar 

  70. Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 1992;359(6398):845–8.

    Article  CAS  PubMed  Google Scholar 

  71. Backer MV, Gaynutdinov TI, Patel V, Bandyopadhyaya AK, Thirumamagal B, Tjarks W, et al. Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther. 2005;4(9):1423–9.

    Article  CAS  PubMed  Google Scholar 

  72. Chen J, Wu H, Han D, Xie C. Using anti-VEGF McAb and magnetic nanoparticles as double-targeting vector for the radioimmunotherapy of liver cancer. Cancer Lett. 2006;231(2):169–75.

    Article  CAS  PubMed  Google Scholar 

  73. Shi S, Yang K, Hong H, Chen F, Valdovinos HF, Goel S, et al. VEGFR targeting leads to significantly enhanced tumor uptake of nanographene oxide in vivo. Biomaterials. 2015;39:39–46.

    Article  CAS  PubMed  Google Scholar 

  74. Goel S, Chen F, Hong H, Valdovinos HF, Hernandez R, Shi S, et al. VEGF121-conjugated mesoporous silica nanoparticle: a tumor targeted drug delivery system. ACS Appl Mater Interfaces. 2014;6(23):21677–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu Y, Hooper AT, Zhong Z, Witte L, Bohlen P, Rafii S, et al. The vascular endothelial growth factor receptor (VEGFR-1) supports growth and survival of human breast carcinoma. Int J Cancer. 2006;119(7):1519–29.

    Article  CAS  PubMed  Google Scholar 

  76. Smith NR, Baker D, James NH, Ratcliffe K, Jenkins M, Ashton SE, et al. Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin Cancer Res. 2010;16(14):3548–61.

    Article  CAS  PubMed  Google Scholar 

  77. Jain S, Deore SV, Ghadi R, Chaudhari D, Kuche K, Katiyar SS. Tumor microenvironment responsive VEGF-antibody functionalized pH sensitive liposomes of docetaxel for augmented breast cancer therapy. Mater Sci Eng C. 2021;121:111832.

    Article  CAS  Google Scholar 

  78. Danhier F, Le Breton A, Préat V. RGD-based strategies to target alpha (v) beta (3) integrin in cancer therapy and diagnosis. Mol Pharm. 2012;9(11):2961–73.

    Article  CAS  PubMed  Google Scholar 

  79. Li L, Wartchow CA, Danthi SN, Shen Z, Dechene N, Pease J, et al. A novel antiangiogenesis therapy using an integrin antagonist or anti–Flk-1 antibody coated 90Y-labeled nanoparticles. Int J Radiat Oncol Biol Phys. 2004;58(4):1215–27.

    Article  CAS  PubMed  Google Scholar 

  80. Felding-Habermann B, O’Toole TE, Smith JW, Fransvea E, Ruggeri ZM, Ginsberg MH, et al. Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci. 2001;98(4):1853–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dai W, Yang F, Ma L, Fan Y, He B, He Q, et al. Combined mTOR inhibitor rapamycin and doxorubicin-loaded cyclic octapeptide modified liposomes for targeting integrin α3 in triple-negative breast cancer. Biomaterials. 2014;35(20):5347–58.

    Article  CAS  PubMed  Google Scholar 

  82. Sorolla A, Sorolla MA, Wang E, Cena V. Peptides, proteins and nanotechnology: a promising synergy for breast cancer targeting and treatment. Expert Opin Drug Deliv. 2020;17(11):1597–613.

    Article  CAS  PubMed  Google Scholar 

  83. Schlesinger M, Bendas G. Vascular cell adhesion molecule-1 (VCAM-1)—an increasing insight into its role in tumorigenicity and metastasis. Int J Cancer. 2015;136(11):2504–14.

    Article  CAS  PubMed  Google Scholar 

  84. Cao H, Zhang Z, Zhao S, He X, Yu H, Yin Q, et al. Hydrophobic interaction mediating self-assembled nanoparticles of succinobucol suppress lung metastasis of breast cancer by inhibition of VCAM-1 expression. J Control Release. 2015;205:162–71.

    Article  CAS  PubMed  Google Scholar 

  85. Scallon BJ, Snyder LA, Anderson GM, Chen Q, Yan L, Weiner LM, et al. A review of antibody therapeutics and antibody-related technologies for oncology. J Immunother. 2006;29(4):351–64.

    Article  PubMed  Google Scholar 

  86. Skliris GP, Leygue E, Watson PH, Murphy LC. Estrogen receptor alpha negative breast cancer patients: estrogen receptor beta as a therapeutic target. J Steroid Biochem Mol Biol. 2008;109(1–2):1–10.

    Article  CAS  PubMed  Google Scholar 

  87. Shanle EK, Xu W. Selectively targeting estrogen receptors for cancer treatment. Adv Drug Deliv Rev. 2010;62(13):1265–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang Y, Wang Z, Qian Y, Fan L, Yue C, Jia F, et al. Synergetic estrogen receptor-targeting liposome nanocarriers with anti-phagocytic properties for enhanced tumor theranostics. J Mater Chem B. 2019;7(7):1056–63.

    Article  CAS  PubMed  Google Scholar 

  89. Pun SH, Tack F, Bellocq NC, Cheng J, Grubbs BH, Jensen GS, et al. Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol Ther. 2004;3(7):641–50.

    Article  CAS  PubMed  Google Scholar 

  90. Anabousi S, Bakowsky U, Schneider M, Huwer H, Lehr C-M, Ehrhardt C. In vitro assessment of transferrin-conjugated liposomes as drug delivery systems for inhalation therapy of lung cancer. Eur J Pharm Sci. 2006;29(5):367–74.

    Article  CAS  PubMed  Google Scholar 

  91. Vandewalle B, Granier A, Peyrat J, Bonneterre J, Lefebvre J. Transferrin receptors in cultured breast cancer cells. J Cancer Res Clin Oncol. 1985;110(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  92. Singh M, Mugler K, Hailoo DW, Burke S, Nemesure B, Torkko K, et al. Differential expression of transferrin receptor (TfR) in a spectrum of normal to malignant breast tissues: implications for in situ and invasive carcinoma. Appl Immunohistochem Mol Morphol. 2011;19(5):417–23.

    Article  CAS  PubMed  Google Scholar 

  93. Tonik SE, Shindelman JE, Sussman HH. Transferrin receptor is inversely correlated with estrogen receptor in breast cancer. Breast Cancer Res Treat. 1986;7(2):71–6.

    Article  CAS  PubMed  Google Scholar 

  94. Li J-L, Wang L, Liu X-Y, Zhang Z-P, Guo H-C, Liu W-M, et al. In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett. 2009;274(2):319–26.

    Article  CAS  PubMed  Google Scholar 

  95. Zheng Y, Yu B, Weecharangsan W, Piao L, Darby M, Mao Y, et al. Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7α-APTADD to breast cancer cells. Int J Pharm. 2010;390(2):234–41.

    Article  CAS  PubMed  Google Scholar 

  96. Mahani M, Pourrahmani-Sarbanani M, Yoosefian M, Divsar F, Mousavi SM, Nomani A. Doxorubicin delivery to breast cancer cells with transferrin-targeted carbon quantum dots: an in vitro and in silico study. J Drug Deliv Sci Technol. 2021;62:102342.

    Article  CAS  Google Scholar 

  97. He GZ, Lin WJ. Peptide-functionalized nanoparticles-encapsulated cyclin-dependent kinases inhibitor seliciclib in transferrin receptor overexpressed cancer cells. Nanomaterials. 2021;11(3):772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xu Q, Zhu M, Yang T, Xu F, Liu Y, Chen Y. Quantitative assessment of human serum transferrin receptor in breast cancer patients pre-and post-chemotherapy using peptide immunoaffinity enrichment coupled with targeted proteomics. Clin Chim Acta. 2015;448:118–23.

    Article  CAS  PubMed  Google Scholar 

  99. Inoue S, Golseiz H, Patil R, Ding H, Rudenkyy S, Holler E, et al. Direct tumor targeting using nanobioconjugate with a combination of monoclonal antibodies for breast cancer treatment. AACR; 2009.

  100. Xu L, Huang C-C, Huang W, Tang W-H, Rait A, Yin YZ, et al. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes 1 this work was supported in part by National Cancer Institute Grant R01 CA45158 (to EC), National Cancer Institute Small Business Technology Transfer Phase I Grant R41 CA80449 (to EC), and a grant from SynerGene Therapeutics, Inc. 1. Mol Cancer Ther. 2002;1(5):337–46.

    CAS  PubMed  Google Scholar 

  101. Harford JB, Kim S-S, Pirollo KF, Rait A, Chang EH. SGT-53: a novel nanomedicine capable of augmenting cancer immunotherapy. Immune Aspects of Biopharmaceuticals and Nanomedicines. Routledge; 2018. p. 929–70.

  102. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 1995;19(3):183–232.

    Article  CAS  PubMed  Google Scholar 

  103. Wang Y, Wang Y, Chen G, Li Y, Xu W, Gong S. Quantum-dot-based theranostic micelles conjugated with an anti-EGFR nanobody for triple-negative breast cancer therapy. ACS Appl Mater Interfaces. 2017;9(36):30297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Low PS, Antony B. Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv Drug Deliv Rev. 2004;56(8):1055–8.

    Article  CAS  PubMed  Google Scholar 

  105. Stella B, Arpicco S, Peracchia MT, Desmaële D, Hoebeke J, Renoir M, et al. Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci. 2000;89(11):1452–64.

    Article  CAS  PubMed  Google Scholar 

  106. Das M, Mohanty C, Sahoo SK. Ligand-based targeted therapy for cancer tissue. Expert Opin Drug Deliv. 2009;6(3):285–304.

    Article  CAS  PubMed  Google Scholar 

  107. Sharma S, Pukale S, Sahel DK, Singh P, Mittal A, Chitkara D. Folate targeted hybrid lipo-polymeric nanoplexes containing docetaxel and miRNA-34a for breast cancer treatment. Mater Sci Eng C. 2021;128:112305.

    Article  CAS  Google Scholar 

  108. Andisheh F, Oroojalian F, Shakour N, Ramezani M, Shamsara J, Khodaverdi E, et al. Docetaxel encapsulation in nanoscale assembly micelles of folate-PEG-docetaxel conjugates for targeted fighting against metastatic breast cancer in vitro and in vivo. Int J Pharm. 2021;605:120822.

    Article  CAS  PubMed  Google Scholar 

  109. Al-Othman N, Alhendi A, Ihbaisha M, Barahmeh M, Alqaraleh M, Al-Momany BZ. Role of CD44 in breast cancer. Breast Dis. 2020;39(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  110. Orian-Rousseau V, Chen L, Sleeman JP, Herrlich P, Ponta H. CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev. 2002;16(23):3074–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang C, He Y, Zhang H, Liu Y, Wang W, Du Y, et al. Selective killing of breast cancer cells expressing activated CD44 using CD44 ligand-coated nanoparticles in vitro and in vivo. Oncotarget. 2015;6(17):15283.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Louderbough JM, Schroeder JA. Understanding the dual nature of CD44 in breast cancer progression. Mol Cancer Res. 2011;9(12):1573–86.

    Article  CAS  PubMed  Google Scholar 

  113. Li J, Li M, Tian L, Qiu Y, Yu Q, Wang X, et al. Facile strategy by hyaluronic acid functional carbon dot-doxorubicin nanoparticles for CD44 targeted drug delivery and enhanced breast cancer therapy. Int J Pharm. 2020;578:119122.

    Article  CAS  PubMed  Google Scholar 

  114. Semkina AS, Abakumov MA, Skorikov AS, Abakumova TO, Melnikov PA, Grinenko NF, et al. Multimodal doxorubicin loaded magnetic nanoparticles for VEGF targeted theranostics of breast cancer. Nanomedicine. 2018;14(5):1733–42.

    Article  CAS  PubMed  Google Scholar 

  115. Wicki A, Rochlitz C, Orleth A, Ritschard R, Albrecht I, Herrmann R, et al. Targeting tumor-associated endothelial cells: anti-VEGFR2 immunoliposomes mediate tumor vessel disruption and inhibit tumor growth. Clin Cancer Res. 2012;18(2):454–64.

    Article  CAS  PubMed  Google Scholar 

  116. Zhong P, Gu X, Cheng R, Deng C, Meng F, Zhong Z. αvβ3 integrin-targeted micellar mertansine prodrug effectively inhibits triple-negative breast cancer in vivo. Int J Nanomed. 2017;12:7913.

    Article  CAS  Google Scholar 

  117. Yan H, You Y, Li X, Liu L, Guo F, Zhang Q, et al. Preparation of RGD peptide/folate acid double-targeted mesoporous silica nanoparticles and its application in human breast cancer MCF-7 cells. Front Pharmacol. 2020;11:898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yadav AS, Radharani NNV, Gorain M, Bulbule A, Shetti D, Roy G, et al. RGD functionalized chitosan nanoparticle mediated targeted delivery of raloxifene selectively suppresses angiogenesis and tumor growth in breast cancer. Nanoscale. 2020;12(19):10664–84.

    Article  CAS  PubMed  Google Scholar 

  119. Cao H, Dan Z, He X, Zhang Z, Yu H, Yin Q, et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano. 2016;10(8):7738–48.

    Article  CAS  PubMed  Google Scholar 

  120. Nazli C, Demirer GS, Yar Y, Acar HY, Kizilel S. Targeted delivery of doxorubicin into tumor cells via MMP-sensitive PEG hydrogel-coated magnetic iron oxide nanoparticles (MIONPs). Colloids Surf B Biointerfaces. 2014;122:674–83.

    Article  CAS  PubMed  Google Scholar 

  121. Zhou K, Zhu Y, Chen X, Li L, Xu W. Redox-and MMP-2-sensitive drug delivery nanoparticles based on gelatin and albumin for tumor targeted delivery of paclitaxel. Mater Sci Eng C. 2020;114:111006.

    Article  CAS  Google Scholar 

  122. Pan J, Li P-J, Wang Y, Chang L, Wan D, Wang H. Active targeted drug delivery of MMP-2 sensitive polymeric nanoparticles. Chem Commun. 2018;54(79):11092–5.

    Article  CAS  Google Scholar 

  123. Cui Y-N, Xu Q-X, Davoodi P, Wang D-P, Wang C-H. Enhanced intracellular delivery and controlled drug release of magnetic PLGA nanoparticles modified with transferrin. Acta Pharmacol Sin. 2017;38(6):943–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sheng Y, Xu J, You Y, Xu F, Chen Y. Acid-sensitive peptide-conjugated doxorubicin mediates the lysosomal pathway of apoptosis and reverses drug resistance in breast cancer. Mol Pharm. 2015;12(7):2217–28.

    Article  CAS  PubMed  Google Scholar 

  125. Vinothini K, Rajendran NK, Ramu A, Elumalai N, Rajan M. Folate receptor targeted delivery of paclitaxel to breast cancer cells via folic acid conjugated graphene oxide grafted methyl acrylate nanocarrier. Biomed Pharmacother. 2019;110:906–17.

    Article  CAS  PubMed  Google Scholar 

  126. Shao W, Paul A, Zhao B, Lee C, Rodes L, Prakash S. Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model. Biomaterials. 2013;34(38):10109–19.

    Article  CAS  PubMed  Google Scholar 

  127. Yassemi A, Kashanian S, Zhaleh H. Folic acid receptor-targeted solid lipid nanoparticles to enhance cytotoxicity of letrozole through induction of caspase-3 dependent-apoptosis for breast cancer treatment. Pharm Dev Technol. 2020;25(4):397–407.

    Article  CAS  PubMed  Google Scholar 

  128. Shi J, Wang B, Wang L, Lu T, Fu Y, Zhang H, et al. Fullerene (C60)-based tumor-targeting nanoparticles with “off-on” state for enhanced treatment of cancer. J Control Release. 2016;235:245–58.

    Article  CAS  PubMed  Google Scholar 

  129. Wang W, Zhang X, Li Z, Pan D, Zhu H, Gu Z, et al. Dendronized hyaluronic acid-docetaxel conjugate as a stimuli-responsive nano-agent for breast cancer therapy. Carbohyd Polym. 2021;267:118160.

    Article  CAS  Google Scholar 

  130. Ravar F, Saadat E, Gholami M, Dehghankelishadi P, Mahdavi M, Azami S, et al. Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation. J Control Release. 2016;229:10–22.

    Article  CAS  PubMed  Google Scholar 

  131. Torchilin V. Liposomes as targetable drug carriers. Crit Rev Ther Drug Carrier Syst. 1985;2(1):65–115.

    CAS  PubMed  Google Scholar 

  132. Shah S, Dhawan V, Holm R, Nagarsenker MS, Perrie Y. Liposomes: advancements and innovation in the manufacturing process. Adv Drug Deliv Rev. 2020.

  133. Henderson IC, Canellos GP. Cancer of the breast: the past decade. N Engl J Med. 1980;302(1):17–30.

    Article  CAS  PubMed  Google Scholar 

  134. Paliwal SR, Paliwal R, Mishra N, Mehta A, Vyas S. A novel cancer targeting approach based on estrone anchored stealth liposome for site-specific breast cancer therapy. Curr Cancer Drug Targets. 2010;10(3):343–53.

    Article  CAS  PubMed  Google Scholar 

  135. Yu J, Lee H, Kim J, Kong W, Kim Y, Cui Z, et al. Bio-distribution and anti-tumor efficacy of PEG/PLA nano particles loaded doxorubicin. J Drug Target. 2007;15(4):279–84.

    Article  CAS  PubMed  Google Scholar 

  136. Park JW. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res. 2002;4(3):1–5.

    Article  Google Scholar 

  137. Tang H, Chen J, Wang L, Li Q, Yang Y, Lv Z, et al. Co-delivery of epirubicin and paclitaxel using an estrone-targeted PEGylated liposomal nanoparticle for breast cancer. Int J Pharm. 2020;573:118806.

    Article  CAS  PubMed  Google Scholar 

  138. Dorjsuren B, Chaurasiya B, Ye Z, Liu Y, Li W, Wang C, et al. Cetuximab-coated thermo-sensitive liposomes loaded with magnetic nanoparticles and doxorubicin for targeted EGFR-expressing breast cancer combined therapy. Int J Nanomed. 2020;15:8201.

    Article  CAS  Google Scholar 

  139. Jain AS, Goel PN, Shah SM, Dhawan VV, Nikam Y, Gude RP, et al. Tamoxifen guided liposomes for targeting encapsulated anticancer agent to estrogen receptor positive breast cancer cells: in vitro and in vivo evaluation. Biomed Pharmacother. 2014;68(4):429–38.

    Article  CAS  PubMed  Google Scholar 

  140. Cosco D, Paolino D, Cilurzo F, Casale F, Fresta M. Gemcitabine and tamoxifen-loaded liposomes as multidrug carriers for the treatment of breast cancer diseases. Int J Pharm. 2012;422(1–2):229–37.

    Article  CAS  PubMed  Google Scholar 

  141. Ding Y, Cui W, Sun D, Wang G-L, Hei Y, Meng S, et al. In vivo study of doxorubicin-loaded cell-penetrating peptide-modified pH-sensitive liposomes: biocompatibility, bio-distribution, and pharmacodynamics in BALB/c nude mice bearing human breast tumors. Drug Des Dev Ther. 2017;11:3105.

    Article  CAS  Google Scholar 

  142. Salkho NM, Paul V, Kawak P, Vitor RF, Martins AM, Al Sayah M, et al. Ultrasonically controlled estrone-modified liposomes for estrogen-positive breast cancer therapy. Art Cells Nanomed Biotechnol. 2018;46(sup2):462–72.

    Article  CAS  Google Scholar 

  143. Xu G, Tang H, Chen J, Zhu M, Xie Y, Li Y, et al. Estrone-targeted liposomes for mitoxantrone delivery via estrogen receptor: in vivo targeting efficacy, antitumor activity, acute toxicity and pharmacokinetics. Eur J Pharm Sci. 2021;161:105780.

    Article  CAS  PubMed  Google Scholar 

  144. Jose A, Ninave KM, Karnam S, Venuganti VVK. Temperature-sensitive liposomes for co-delivery of tamoxifen and imatinib for synergistic breast cancer treatment. J Liposome Res. 2019;29(2):153–62.

    Article  CAS  PubMed  Google Scholar 

  145. Lingayat VJ, Zarekar NS, Shendge RS. Solid lipid nanoparticles: a review. Nanosci Nanotechnol Res. 2017;2:67–72.

    Google Scholar 

  146. Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2012;64:83–101.

    Article  Google Scholar 

  147. Cai S, Yang Q, Bagby TR, Forrest ML. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv Drug Deliv Rev. 2011;63(10–11):901–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mukherjee S, Ray S, Thakur R. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zheng G, Zheng M, Yang B, Fu H, Li Y. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomed Pharmacother. 2019;116:109006.

    Article  CAS  PubMed  Google Scholar 

  150. Eskiler GG, Cecener G, Dikmen G, Egeli U, Tunca B. Solid lipid nanoparticles: reversal of tamoxifen resistance in breast cancer. Eur J Pharm Sci. 2018;120:73–88.

    Article  Google Scholar 

  151. Fontana G, Maniscalco L, Schillaci D, Cavallaro G, Giammona G. Solid lipid nanoparticles containing tamoxifen characterization and in vitro antitumoral activity. Drug Delivery. 2005;12(6):385–92.

    Article  CAS  PubMed  Google Scholar 

  152. Wang W, Chen T, Xu H, Ren B, Cheng X, Qi R, et al. Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer. Molecules. 2018;23(7):1578.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Baek J-S, Kim J-H, Park J-S, Cho C-W. Modification of paclitaxel-loaded solid lipid nanoparticles with 2-hydroxypropyl-β-cyclodextrin enhances absorption and reduces nephrotoxicity associated with intravenous injection. Int J Nanomed. 2015;10:5397.

    CAS  Google Scholar 

  154. Baek J-S, So J-W, Shin S-C, Cho C-W. Solid lipid nanoparticles of paclitaxel strengthened by hydroxypropyl-β-cyclodextrin as an oral delivery system. Int J Mol Med. 2012;30(4):953–9.

    Article  CAS  PubMed  Google Scholar 

  155. Yamazaki M, Ito T. Deformation and instability of membrane structure of phospholipid vesicles caused by osmophobic association: mechanical stress model for the mechanism of poly (ethylene glycol)-induced membrane fusion. Biochemistry. 1990;29(5):1309–14.

    Article  CAS  PubMed  Google Scholar 

  156. Bhagwat GS, Athawale RB, Gude RP, Md S, Alhakamy NA, Fahmy UA, et al. Formulation and development of transferrin targeted solid lipid nanoparticles for breast cancer therapy. Front Pharmacol. 2020;11.

  157. Yuan Q, Han J, Cong W, Ge Y, Ma D, Dai Z, et al. Docetaxel-loaded solid lipid nanoparticles suppress breast cancer cells growth with reduced myelosuppression toxicity. Int J Nanomed. 2014;9:4829.

    Google Scholar 

  158. Lu B, Xiong S-B, Yang H, Yin X-D, Chao R-B. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur J Pharm Sci. 2006;28(1–2):86–95.

    Article  CAS  PubMed  Google Scholar 

  159. Wang W, Zhang L, Chen T, Guo W, Bao X, Wang D, et al. Anticancer effects of resveratrol-loaded solid lipid nanoparticles on human breast cancer cells. Molecules. 2017;22(11):1814.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–77.

    Article  PubMed  Google Scholar 

  161. Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomedicine. 2016;12(1):143–61.

    Article  CAS  PubMed  Google Scholar 

  162. Liu Q, Li J, Pu G, Zhang F, Liu H, Zhang Y. Co-delivery of baicalein and doxorubicin by hyaluronic acid decorated nanostructured lipid carriers for breast cancer therapy. Drug Delivery. 2016;23(4):1364–8.

    Article  CAS  PubMed  Google Scholar 

  163. Sartaj A, Annu, Alam M, Biswas L, Yar MS, Mir SR, et al. Combinatorial delivery of Ribociclib and green tea extract mediated nanostructured lipid carrier for oral delivery for the treatment of breast cancer synchronising in silico, in vitro, and in vivo studies. J Drug Target. 2022:1–22.

  164. Singh A, Neupane YR, Mangla B, Kohli K. Nanostructured lipid carriers for oral bioavailability enhancement of exemestane: formulation design, in vitro, ex vivo, and in vivo studies. J Pharm Sci. 2019;108(10):3382–95.

    Article  CAS  PubMed  Google Scholar 

  165. Jain S, Patil SR, Swarnakar NK, Agrawal AK. Oral delivery of doxorubicin using novel polyelectrolyte-stabilized liposomes (layersomes). Mol Pharm. 2012;9(9):2626–35.

    Article  CAS  PubMed  Google Scholar 

  166. Jain AK, Swarnakar NK, Godugu C, Singh RP, Jain S. The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials. 2011;32(2):503–15.

    Article  CAS  PubMed  Google Scholar 

  167. Kebebe D, Wu Y, Zhang B, Yang J, Liu Y, Li X, et al. Dimeric c (RGD) peptide conjugated nanostructured lipid carriers for efficient delivery of Gambogic acid to breast cancer. Int J Nanomed. 2019;14:6179.

    Article  CAS  Google Scholar 

  168. Di H, Wu H, Gao Y, Li W, Zou D, Dong C. Doxorubicin-and cisplatin-loaded nanostructured lipid carriers for breast cancer combination chemotherapy. Drug Dev Ind Pharm. 2016;42(12):2038–43.

    Article  CAS  PubMed  Google Scholar 

  169. Liu D, Liu Z, Wang L, Zhang C, Zhang N. Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf B. 2011;85(2):262–9.

    Article  CAS  Google Scholar 

  170. Zhang Q, Zhao J, Hu H, Yan Y, Hu X, Zhou K, et al. Construction and in vitro and in vivo evaluation of folic acid-modified nanostructured lipid carriers loaded with paclitaxel and chlorin e6. Int J Pharm. 2019;569:118595.

    Article  CAS  PubMed  Google Scholar 

  171. Sabzichi M, Mohammadian J, Khosroushahi AY, Bazzaz R, Hamishehkar H. Folate-targeted nanostructured lipid carriers (NLCs) enhance (letrozol) efficacy in MCF-7 breast cancer cells. Asian Pac J Cancer Prev. 2016;17(12):5185.

    PubMed  PubMed Central  Google Scholar 

  172. Sabzichi M, Mohammadian J, Mohammadi M, Jahanfar F, Movassagh Pour AA, Hamishehkar H, et al. Vitamin D-loaded nanostructured lipid carrier (NLC): a new strategy for enhancing efficacy of doxorubicin in breast cancer treatment. Nutr Cancer. 2017;69(6):840–8.

    Article  CAS  PubMed  Google Scholar 

  173. Castro KCD, Costa JM, Campos MGN. Drug-loaded polymeric nanoparticles: a review. Int J Polym Mater Polym Biomater. 2020:1–13.

  174. Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2006;58(14):1532–55.

    Article  CAS  PubMed  Google Scholar 

  175. Rezaei L, Safavi MS, Shojaosadati SA. Protein nanocarriers for targeted drug delivery. Characterization and biology of nanomaterials for drug delivery. 2019:199–218.

  176. Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 2012;157(2):168–82.

    Article  CAS  PubMed  Google Scholar 

  177. Singh PK, Srivastava AK, Dev A, Kaundal B, Choudhury SR, Karmakar S. 1, 3β-Glucan anchored, paclitaxel loaded chitosan nanocarrier endows enhanced hemocompatibility with efficient anti-glioblastoma stem cells therapy. Carbohyd Polym. 2018;180:365–75.

    Article  CAS  Google Scholar 

  178. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B. 2010;75(1):1–18.

    Article  CAS  Google Scholar 

  179. Bhardwaj RK, Glaeser H, Becquemont L, Klotz U, Gupta SK, Fromm MF. Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Ther. 2002;302(2):645–50.

    Article  CAS  PubMed  Google Scholar 

  180. Bezerra D, Castro F, Alves A, Pessoa C, Moraes M, Silveira E, et al. In vivo growth-inhibition of Sarcoma 180 by piplartine and piperine, two alkaloid amides from Piper. Braz J Med Biol Res. 2006;39:801–7.

    Article  CAS  PubMed  Google Scholar 

  181. Katiyar SS, Muntimadugu E, Rafeeqi TA, Domb AJ, Khan W. Co-delivery of rapamycin-and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Deliv. 2016;23(7):2608–16.

    Article  CAS  PubMed  Google Scholar 

  182. Kanade R, Boche M, Pokharkar V. Self-Assembling raloxifene loaded mixed micelles: formulation optimization, in vitro cytotoxicity and in vivo pharmacokinetics. AAPS PharmSciTech. 2018;19(3):1105–15.

    Article  CAS  PubMed  Google Scholar 

  183. Alyafee YA, Alaamery M, Bawazeer S, Almutairi MS, Alghamdi B, Alomran N, et al. Preparation of anastrozole loaded PEG-PLA nanoparticles: evaluation of apoptotic response of breast cancer cell lines. Int J Nanomed. 2018;13:199.

    Article  CAS  Google Scholar 

  184. Pugazhendhi A, Edison TNJI, Karuppusamy I, Kathirvel B. Inorganic nanoparticles: a potential cancer therapy for human welfare. Int J Pharm. 2018;539(1–2):104–11.

    Article  CAS  PubMed  Google Scholar 

  185. Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, et al. Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction. Nat Biotechnol. 2004;22(2):198–203.

    Article  CAS  PubMed  Google Scholar 

  186. Núñez C, Estévez SV, del Pilar CM. Inorganic nanoparticles in diagnosis and treatment of breast cancer. J Biol Inorg Chem. 2018;23(3):331–45.

    Article  PubMed  Google Scholar 

  187. Farrokhi F, Karami Z, Esmaeili-Mahani S, Heydari A. Delivery of DNAzyme targeting c-Myc gene using β-cyclodextrin polymer nanocarrier for therapeutic application in human breast cancer cell line. J Drug Delivery Sci Technol. 2018;47:477–84.

    Article  CAS  Google Scholar 

  188. Kievit FM, Stephen ZR, Veiseh O, Arami H, Wang T, Lai VP, et al. Targeting of primary breast cancers and metastases in a transgenic mouse model using rationally designed multifunctional SPIONs. ACS Nano. 2012;6(3):2591–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Chen T-J, Cheng T-H, Chen C-Y, Hsu SC, Cheng T-L, Liu G-C, et al. Targeted Herceptin–dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. J Biol Inorg Chem. 2009;14(2):253–60.

    Article  CAS  PubMed  Google Scholar 

  190. Liu J, Liang H, Li M, Luo Z, Zhang J, Guo X, et al. Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy. Biomaterials. 2018;157:107–24.

    Article  CAS  PubMed  Google Scholar 

  191. Liu D, Zhang Q, Wang J, Fan L, Zhu W, Cai D. Hyaluronic acid-coated single-walled carbon nanotubes loaded with doxorubicin for the treatment of breast cancer. Pharmazie. 2019;74(2):83–90.

    CAS  PubMed  Google Scholar 

  192. Kumar M, Sharma G, Misra C, Kumar R, Singh B, Katare OP, et al. N-Desmethyl tamoxifen and quercetin-loaded multiwalled CNTs: a synergistic approach to overcome MDR in cancer cells. Mater Sci Eng, C. 2018;89:274–82.

    Article  CAS  Google Scholar 

  193. Misra C, Kumar M, Sharma G, Kumar R, Singh B, Katare OP, et al. Glycinated fullerenes for tamoxifen intracellular delivery with improved anticancer activity and pharmacokinetics. Nanomedicine. 2017;12(9):1011–23.

    Article  CAS  PubMed  Google Scholar 

  194. Dreaden EC, Mwakwari SC, Sodji QH, Oyelere AK, El-Sayed MA. Tamoxifen− poly (ethylene glycol)− thiol gold nanoparticle conjugates: enhanced potency and selective delivery for breast cancer treatment. Bioconjug Chem. 2009;20(12):2247–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Moreira AF, Dias DR, Correia IJ. Stimuli-responsive mesoporous silica nanoparticles for cancer therapy: a review. Microporous Mesoporous Mater. 2016;236:141–57.

    Article  CAS  Google Scholar 

  196. Feng Y, Panwar N, Tng DJH, Tjin SC, Wang K, Yong K-T. The application of mesoporous silica nanoparticle family in cancer theranostics. Coord Chem Rev. 2016;319:86–109.

    Article  CAS  Google Scholar 

  197. Tsai C-P, Chen C-Y, Hung Y, Chang F-H, Mou C-Y. Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J Mater Chem. 2009;19(32):5737–43.

    Article  CAS  Google Scholar 

  198. Latorre A, Posch C, Garcimartín Y, Celli A, Sanlorenzo M, Vujic I, et al. DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics. Nanoscale. 2014;6(13):7436–42.

    Article  CAS  PubMed  Google Scholar 

  199. Sadhukhan P, Kundu M, Chatterjee S, Ghosh N, Manna P, Das J, et al. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater Sci Eng C. 2019;100:129–40.

    Article  CAS  Google Scholar 

  200. Ghosh S, More P, Derle A, Kitture R, Kale T, Gorain M, et al. Diosgenin functionalized iron oxide nanoparticles as novel nanomaterial against breast cancer. J Nanosci Nanotechnol. 2015;15(12):9464–72.

    Article  CAS  PubMed  Google Scholar 

  201. Oskoueian A, Amin Matori K, Bayat S, Oskoueian E, Ostovan F, Toozandehjani M. Fabrication, characterization, and functionalization of single-walled carbon nanotube conjugated with tamoxifen and its anticancer potential against human breast cancer cells. J Nanomater. 2018;2018.

  202. Lee JY, Kim JH, Bae KH, Oh MH, Kim Y, Kim JS, et al. Low-density lipoprotein-mimicking nanoparticles for tumor-targeted theranostic applications. Small. 2015;11(2):222–31.

    Article  CAS  PubMed  Google Scholar 

  203. Rejeeth C, Kannan S. p53 gene therapy of human breast carcinoma: using a transferrin-modified silica nanoparticles. Breast Cancer. 2016;23(1):101–10.

    Article  PubMed  Google Scholar 

  204. Liang Y, Gao W, Peng X, Deng X, Sun C, Wu H, et al. Near infrared light responsive hybrid nanoparticles for synergistic therapy. Biomaterials. 2016;100:76–90.

    Article  CAS  PubMed  Google Scholar 

  205. He Q, Gao Y, Zhang L, Zhang Z, Gao F, Ji X, et al. A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials. 2011;32(30):7711–20.

    Article  CAS  PubMed  Google Scholar 

  206. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018;359(6372).

  207. Mandal H, Katiyar SS, Swami R, Kushwah V, Katare PB, Meka AK, et al. ε-Poly-l-lysine/plasmid DNA nanoplexes for efficient gene delivery in vivo. Int J Pharm. 2018;542(1–2):142–52.

    Article  CAS  PubMed  Google Scholar 

  208. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–55.

    Article  CAS  PubMed  Google Scholar 

  209. Kuche K, Pandey PK, Patharkar A, Maheshwari R, Tekade RK. Hyaluronic acid as an emerging technology platform for silencing RNA delivery. Biomaterials and Bionanotechnology. Elsevier; 2019. p. 415–58.

  210. Behr JP. Synthetic gene-transfer vectors. Acc Chem Res. 1993;26(5):274–8.

    Article  CAS  Google Scholar 

  211. Zhang M, Xu R, Xia X, Yang Y, Gu J, Qin G, et al. Polycation-functionalized nanoporous silicon particles for gene silencing on breast cancer cells. Biomaterials. 2014;35(1):423–31.

    Article  CAS  PubMed  Google Scholar 

  212. Xu G, Chhangawala S, Cocco E, Razavi P, Cai Y, Otto JE, et al. ARID1A determines luminal identity and therapeutic response in estrogen-receptor-positive breast cancer. Nat Genet. 2020;52(2):198–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Xu X, Liu C, Wang Y, Koivisto O, Zhou J, Shu Y, et al. Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment. Adv Drug Deliv Rev. 2021;176:113891.

    Article  CAS  PubMed  Google Scholar 

  214. Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  215. Zhu H, Zhang L, Tong S, Lee CM, Deshmukh H, Bao G. Spatial control of in vivo CRISPR–Cas9 genome editing via nanomagnets. Nat Biomed Eng. 2019;3(2):126–36.

    Article  CAS  PubMed  Google Scholar 

  216. Gao S, Tian H, Guo Y, Li Y, Guo Z, Zhu X, et al. miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy. Acta Biomater. 2015;25:184–93.

    Article  CAS  PubMed  Google Scholar 

  217. Li X, Chen Y, Wang M, Ma Y, Xia W, Gu H. A mesoporous silica nanoparticle–PEI–fusogenic peptide system for siRNA delivery in cancer therapy. Biomaterials. 2013;34(4):1391–401.

    Article  CAS  PubMed  Google Scholar 

  218. Ni Q, Zhang F, Zhang Y, Zhu G, Wang Z, Teng Z, et al. In situ shRNA synthesis on DNA–polylactide nanoparticles to treat multidrug resistant breast cancer. Adv Mater. 2018;30(10):1705737.

    Article  Google Scholar 

  219. Chen M, Wang L, Wang F, Li F, Xia W, Gu H, et al. Quick synthesis of a novel combinatorial delivery system of siRNA and doxorubicin for a synergistic anticancer effect. Int J Nanomed. 2019;14:3557.

    Article  CAS  Google Scholar 

  220. Liang Z, Du L, Zhang E, Zhao Y, Wang W, Ma P, et al. Targeted-delivery of siRNA via a polypeptide-modified liposome for the treatment of gp96 over-expressed breast cancer. Mater Sci Eng C. 2021;121:111847.

    Article  CAS  Google Scholar 

  221. Mbatha LS, Maiyo F, Daniels A, Singh M. Dendrimer-coated gold nanoparticles for efficient folate-targeted mRNA delivery in vitro. Pharmaceutics. 2021;13(6):900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Alshaer W, Hillaireau H, Vergnaud J, Mura S, Deloménie C, Sauvage F, et al. Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model. J Control Release. 2018;271:98–106.

    Article  CAS  PubMed  Google Scholar 

  223. Devulapally R, Sekar TV, Paulmurugan R. Formulation of anti-miR-21 and 4-hydroxytamoxifen co-loaded biodegradable polymer nanoparticles and their antiproliferative effect on breast cancer cells. Mol Pharm. 2015;12(6):2080–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Hu F, Chen W, Zhao M, Yuan H, Du Y. Effective antitumor gene therapy delivered by polyethylenimine-conjugated stearic acid-g-chitosan oligosaccharide micelles. Gene Ther. 2013;20(6):597–606.

    Article  CAS  PubMed  Google Scholar 

  225. Hong RL, Tseng YL. Phase I and pharmacokinetic study of a stable, polyethylene-glycolated liposomal doxorubicin in patients with solid tumors: the relation between pharmacokinetic property and toxicity. Cancer. 2001;91(9):1826–33.

    Article  CAS  PubMed  Google Scholar 

  226. Fujiwara Y, Mukai H, Saeki T, Ro J, Lin Y-C, Nagai SE, et al. A multi-national, randomised, open-label, parallel, phase III non-inferiority study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Br J Cancer. 2019;120(5):475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil–based paclitaxel in women with breast cancer. J Clin Oncol. 2005;23(31):7794–803.

    Article  CAS  PubMed  Google Scholar 

  228. Gonzalez-Angulo AM, Meric-Bernstam F, Chawla S, Falchook G, Hong D, Akcakanat A, et al. Weekly nab-Rapamycin in patients with advanced nonhematologic malignancies: final results of a phase I trial. Clin Cancer Res. 2013;19(19):5474–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Tan YL, Ho HK. Navigating albumin-based nanoparticles through various drug delivery routes. Drug Discovery Today. 2018;23(5):1108–14.

    Article  CAS  PubMed  Google Scholar 

  230. Mita MM, Natale RB, Wolin EM, Laabs B, Dinh H, Wieland S, et al. Pharmacokinetic study of aldoxorubicin in patients with solid tumors. Invest New Drugs. 2015;33(2):341–8.

    Article  CAS  PubMed  Google Scholar 

  231. Unger C, Häring B, Medinger M, Drevs J, Steinbild S, Kratz F, et al. Phase I and pharmacokinetic study of the (6-maleimidocaproyl) hydrazone derivative of doxorubicin. Clin Cancer Res. 2007;13(16):4858–66.

    Article  CAS  PubMed  Google Scholar 

  232. Libutti SK, Paciotti GF, Byrnes AA, Alexander HR, Gannon WE, Walker M, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res. 2010;16(24):6139–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Tagami T, Ozeki T. Recent trends in clinical trials related to carrier-based drugs. J Pharm Sci. 2017;106(9):2219–26.

    Article  CAS  PubMed  Google Scholar 

  234. Deeken JF, Slack R, Weiss GJ, Ramanathan RK, Pishvaian MJ, Hwang J, et al. A phase I study of liposomal-encapsulated docetaxel (LE-DT) in patients with advanced solid tumor malignancies. Cancer Chemother Pharmacol. 2013;71(3):627–33.

    Article  CAS  PubMed  Google Scholar 

  235. Pushpalatha R, Selvamuthukumar S, Kilimozhi D. Nanocarrier mediated combination drug delivery for chemotherapy–a review. J Drug Delivery Sci Technol. 2017;39:362–71.

    Article  CAS  Google Scholar 

  236. van der Meel R, Lammers T, Hennink WE. Cancer nanomedicines: oversold or underappreciated? Expert Opin Drug Deliv. 2017;14(1):1–5.

    Article  PubMed  Google Scholar 

  237. Nahleh ZA, Barlow WE, Hayes DF, Schott AF, Gralow JR, Perez EA, et al. Abstract P3–11–16: S0800: Nab-paclitaxel, doxorubicin, cyclophosphamide, and pegfilgrastim with or without bevacizumab in treating women with inflammatory or locally advanced breast cancer (NCI CDR0000636131). AACR; 2015.

  238. Koca E, Niravath PA, Ensor J, Patel TA, Li X, Hemati P, et al. ANETT: PhAse II trial of NEoadjuvant TAK-228 plus Tamoxifen in patients with hormone receptor-positive breast cancer. Breast Cancer Res Treat. 2021:1–7.

  239. Svenson S. What nanomedicine in the clinic right now really forms nanoparticles? Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(2):125–35.

    Article  CAS  PubMed  Google Scholar 

  240. Brandsma D, Kerklaan BM, Diéras V, Altintas S, Anders C, Ballester MA, et al. Phase 1/2a study of glutathione pegylated liposomal doxorubicin (2b3–101) in patients with brain metastases (BM) from solid tumors or recurrent high grade gliomas (HGG). Ann Oncol. 2014;25:iv157.

    Article  Google Scholar 

  241. Anselmo AC, Mitragotri S. A review of clinical translation of inorganic nanoparticles. AAPS J. 2015;17(5):1041–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Shah N, Mohammad AS, Saralkar P, Sprowls SA, Vickers SD, John D, et al. Investigational chemotherapy and novel pharmacokinetic mechanisms for the treatment of breast cancer brain metastases. Pharmacol Res. 2018;132:47–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Department of Pharmaceuticals (DoP), Ministry of Chemicals and Fertilizers, Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

Mayur Aalhate and Srushti Mahajan: Literature survey and writing and draft preparation of the manuscript. Hoshiyar Singh: Proof reading and revision. Santosh Kumar Guru and Pankaj Kumar Singh: Reviewing and editing.

Corresponding author

Correspondence to Pankaj Kumar Singh.

Ethics declarations

Ethics approval and consent to participate

No animal or human studies were carried out by the authors for this article.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Conventional anticancer strategies suffer due to low tissue accumulation, poor bioavailability, and high drug resistance.

• Breast cancer relapse is a result of tumor heterogeneity and the complexity of pathways.

• Nanomedicine has the potential to combat unmet clinical needs in cancer treatments.

• Lipids, polymers, and inorganic material-based formulations can effectively target breast cancer and deliver therapeutic genes and drugs.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aalhate, M., Mahajan, S., Singh, H. et al. Nanomedicine in therapeutic warfront against estrogen receptor–positive breast cancer. Drug Deliv. and Transl. Res. 13, 1621–1653 (2023). https://doi.org/10.1007/s13346-023-01299-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01299-7

Keywords

Navigation