Skip to main content

Advertisement

Log in

Topical and transdermal delivery with diseased human skin: passive and iontophoretic delivery of hydrocortisone into psoriatic and eczematous skin

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Psoriasis and atopic dermatitis (eczema) are both common immune-mediated inflammatory skin diseases associated with changes in skin’s stratum corneum lipid structure and barrier functionality. The present study aimed to investigate healthy, eczematous, and psoriatic excised human tissue for the effect of non-infectious skin diseases on skin characteristics (surface color, pH, transepidermal water loss, electrical resistance, and histology), as well as on permeation and retention profile of hydrocortisone. Further, differences in percutaneous absorption on application of iontophoresis on healthy and diseased skin were also investigated. Measurements of transepidermal water loss and electrical resistance showed a significant difference in psoriasis skin samples indicating a damaged barrier function. In vitro permeation studies on full-thickness human skin using vertical diffusion cells further confirmed these results as the drug amount retained in the psoriatic tissue was significantly higher when compared with the other groups. Despite no significant difference, the presence of the drug in the receptor chamber in both diseased groups can be concerning as it suggests the increased possibility of systemic absorption and adverse reactions associated with it in the use of topical corticosteroids. Application of anodal iontophoresis resulted in greater distribution of hydrocortisone into deeper layers of skin and the receptor chamber, in comparison to passive permeation. However, no significant differences were observed due to the healthy or diseased condition of skin.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Hay RJ, Johns NE, Williams HC, Bolliger IW, Dellavalle RP, Margolis DJ, et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J Invest Dermatol Elsevier Masson SAS. 2014;134:1527–34.

    Article  CAS  Google Scholar 

  2. Lim HW, Collins SAB, Resneck JS, Bolognia JL, Hodge JA, Rohrer TA, et al. The burden of skin disease in the United States. J Am Acad Dermatol. Elsevier Inc; 2017;76:958–972.e2.

  3. Mounessa J, Braunberger T, Dunnick CA, Dellavalle RP. Minimal improvements in the global burden of skin disease from 1990 to 2013. J Am Acad Dermatol. Elsevier Inc; 2017;76:148–9.

  4. Hong J, Koo B, Koo J. The psychosocial and occupational impact of chronic skin disease. Dermatol Ther. 2008;21:54–9.

    Article  PubMed  Google Scholar 

  5. Andersen LK, Davis MDP. The epidemiology of skin and skin-related diseases: a review of population-based studies performed by using the rochester epidemiology project. Mayo Clin Proc [Internet]. Elsevier Inc; 2013;88:1462–7. Available from: https://doi.org/10.1016/j.mayocp.2013.08.018

  6. Langley RGB, Krueger GG, Griffiths CEM. Psoriasis: epidemiology, clinical features, and quality of life. Ann Rheum Dis. 2005;64:18–23.

    Article  Google Scholar 

  7. Choi J, Koo JY. Quality of life issues in psoriasis. J Am Acad Dermatol. 2003;49:S57-61.

    Article  PubMed  Google Scholar 

  8. Daghem M, Newby D. Psoriasis and inflammation more than skin deep. Allergol Int. 2018;11:1–3.

    Google Scholar 

  9. Boehncke WH, Schön MP. Psoriasis Lancet. 2015;386:983–94177.

    Article  CAS  PubMed  Google Scholar 

  10. Law RM, Gulliver WP. Psoriasis. In: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM, editors. Pharmacother A Pathophysiol Approach, 10e. New York, NY: McGraw-Hill Education; 2017.

  11. Barnes PJ. Corticosteroids: The drugs to beat. Eur J Pharmacol. 2006;533:2–14.

    Article  CAS  PubMed  Google Scholar 

  12. Law RM, Kwa PG. Atopic Dermatitis. In: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM, editors. Pharmacother A Pathophysiol Approach, 10e [Internet]. New York, NY: McGraw-Hill Education; 2017. Available from: http://accesspharmacy.mhmedical.com/content.aspx?aid=1145203809

  13. Bieber T. Atopic Dermatitis. N Engl J Med. 2008;358:1483–94.

    Article  CAS  PubMed  Google Scholar 

  14. Williams H, Flohr C. How epidemiology has challenged 3 prevailing concepts about atopic dermatitis. J Allergy Clin Immunol. 2006;118:209–13.

    Article  PubMed  Google Scholar 

  15. Furue M, Terao H, Rikihisa W, Urabe K, Kinukawa N, Nose Y, et al. Clinical dose and adverse effects of topical steroids in daily management of atopic dermatitis. Br J Dermatol. 2003;148:128–33.

    Article  CAS  PubMed  Google Scholar 

  16. Elias PM. Epidermal lipids, barrier function, and desquamation. J Invest Dermatol. 1983;80:S44–9.

    Article  Google Scholar 

  17. Coderch L, López O, de la Maza A, Parra JL. Ceramides and skin function. Am J Clin Dermatol. 2003;4:107–29.

    Article  PubMed  Google Scholar 

  18. Holleran WM, Man MQ, Gao WN, Menon GK, Elias PM, Feingold KR. Sphingolipids are required for mammalian epidermal barrier function. Inhibition of sphingolipid synthesis delays barrier recovery after acute perturbation. J Clin Invest. 1991;88:1338–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Farwanah H, Raith K, Neubert RHH, Wohlrab J. Ceramide profiles of the uninvolved skin in atopic dermatitis and psoriasis are comparable to those of healthy skin. Arch Dermatol Res. 2005;296:514–21.

    Article  CAS  PubMed  Google Scholar 

  20. Bouwstra JA, Ponec M. The skin barrier in healthy and diseased state. Biochim Biophys Acta - Biomembr. 2006;1758:2080–95.

    Article  CAS  Google Scholar 

  21. Fang YP, Yang SH, Lee CH, Aljuffali IA, Kao HC, Fang JY. What is the discrepancy between drug permeation into/across intact and diseased skins? Atopic dermatitis as a model. Int J Pharm [Internet]. Elsevier B.V.; 2016;497:277–86. Available from: https://doi.org/10.1016/j.ijpharm.2015.12.006

  22. Kezic S, Nielsen JB. Absorption of chemicals through compromised skin. Int. Arch. Occup. Environ. Health. Springer; 2009. p. 677–88.

  23. Baboota S, Sharma S, Kumar A, Alam MS, Sahni J, Ali J. Nanocarrier-based hydrogel of betamethasone dipropionate and salicylic acid for treatment of psoriasis. Int J Pharm Investig. EManuscript Services; 2011;1:139.

  24. Marjukka Suhonen T, A. Bouwstra J, Urtti A. Chemical enhancement of percutaneous absorption in relation to stratum corneum structural alterations. J Control Release. Elsevier; 1999;59:149–61.

  25. Carvajal-Vidal P, Mallandrich M, García M, Calpena A. Effect of different skin penetration promoters in halobetasol propionate permeation and retention in human skin. Int J Mol Sci [Internet]. 2017;18:2475. Available from: http://www.mdpi.com/1422-0067/18/11/2475

  26. Banga AK. Electrically assisted transdermal and topical drug delivery [Internet]. London: CRC Press; 1998. Available from: https://www.taylorfrancis.com/books/9780203483985

  27. Kalia YN, Naik A, Garrison J, Guy RH. Iontophoretic drug delivery. Adv Drug Deliv Rev [Internet]. 2004;56:619–58. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X03002424

  28. Pikal MJ. The role of electroosmotic flow in transdermal iontophoresis. Adv Drug Deliv Rev [Internet]. 2001;46:281–305. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X00001381

  29. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol [Internet]. 2008;26:1261–8. Available from: http://www.nature.com/articles/nbt.1504

  30. Costello CT, Jeske AH. Iontophoresis: Applications in transdermal medication delivery. Phys Ther [Internet]. 1995;75:554–63. Available from: https://academic.oup.com/ptj/article/2632948/Iontophoresis:

  31. Van Le Q, Howard A. Dexamethasone iontophoresis for the treatment of nail psoriasis. Australas J Dermatol. 2013;54:115–9.

    Article  PubMed  Google Scholar 

  32. Abd E, Yousuf S, Pastore M, Telaprolu K, Mohammed Y, Namjoshi S, et al. Skin models for the testing of transdermal drugs. Clin Pharmacol Adv Appl. 2016;8:163–76.

    CAS  Google Scholar 

  33. Westerhof W. CIE colorimetry. In: Serup J, Jemec GBE, editors. Vivo Exam Ski A Handb Non-invasive methods. Boca Raton, FL: CRC Press; 1995. p. 385–95.

    Google Scholar 

  34. Charys P, Alewaeters K, Lambrecht R, Bare AO. Skin color measurements: comparison between three instruments: the Chromameter, the Derma Spectro-meter and the Mexameter. Ski Res Technol. 2000;6:230–8.

    Article  Google Scholar 

  35. Alexander H, Brown S, Danby S, Flohr C. Research techniques made simple: transepidermal water loss measurement as a research tool. J Invest Dermatol [Internet]. 2018;138:2295–2300.e1. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022202X18325764

  36. Jiang Y, Murnane KS, Bhattaccharjee SA, Blough BE, Banga AK. Skin delivery and irritation potential of phenmetrazine as a candidate transdermal formulation for repurposed indications. AAPS J The AAPS Journal. 2019;21:1–9.

    Google Scholar 

  37. Murthy SN, Sen A, Zhao YL, Hui SW. pH influences the postpulse permeability state of skin after electroporation. J Control Release. 2003;93:49–57.

    Article  CAS  PubMed  Google Scholar 

  38. Guttman-Yassky E, Nograles KE, Krueger JG. Contrasting pathogenesis of atopic dermatitis and psoriasis - Part I: clinical and pathologic concepts. J Allergy Clin Immunol [Internet]. Elsevier Ltd; 2011;127:1110–8. Available from: https://doi.org/10.1016/j.jaci.2011.01.053

  39. Akomeah FK, Martin GP, Muddle AG, Brown MB. Effect of abrasion induced by a rotating brush on the skin permeation of solutes with varying physicochemical properties. Eur J Pharm Biopharm Elsevier. 2008;68:724–34.

    Article  CAS  Google Scholar 

  40. Matsunaga Y, Ogura Y, Ehama R, Amano S, Nishiyama T, Tagami H. Establishment of a mouse skin model of the lichenification in human chronic eczematous dermatitis. Br J Dermatol Wiley Online Library. 2007;156:884–91.

    CAS  Google Scholar 

  41. Dąbrowska AK, Rotaru G, Derler S, Spano F, Camenzind M, Annaheim S, et al. Materials used to simulate physical properties of human skin. Ski Res Technol Wiley Online Library. 2016;22:3–14.

    Article  Google Scholar 

  42. Arima K, Ohta S, Takagi A, Shiraishi H, Masuoka M, Ontsuka K, et al. Periostin contributes to epidermal hyperplasia in psoriasis common to atopic dermatitis. Allergol Int. 2016;64:41–8.

    Article  Google Scholar 

  43. Elias PM, Feingold KR. Coordinate regulation of epidermal differentiation and barrier homeostasis. Skin Pharmacol Appl Skin Physiol. 2001;14:28–34.

    Article  CAS  PubMed  Google Scholar 

  44. Ikeyama K, Fuziwara S, Denda M. Topical application of neuronal nitric oxide synthase inhibitor accelerates cutaneous barrier recovery and prevents epidermal hyperplasia induced by barrier disruption. J Invest Dermatol. 2007;127:1713–9.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Q, Murawsky M, LaCount T, Kasting GB, Li SK. Transepidermal water loss and skin conductance as barrier integrity tests. Toxicol Vitr Elsevier. 2018;51:129–35.

    Article  CAS  Google Scholar 

  46. Braun-Falco O. Korting HC [Normal pH value of human skin]. Hautarzt. 1986;37:126–9.

    CAS  PubMed  Google Scholar 

  47. Schmid-Wendtner M-H, Korting HC. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol. 2006;19:296–302.

    Article  PubMed  Google Scholar 

  48. Rippke F, Schreiner V, Doering T, Maibach HI. Stratum corneum ph in atopic dermatitis. Am J Clin Dermatol. 2004;5:217–23.

    Article  PubMed  Google Scholar 

  49. Cannavò SP, Guarneri F, Giuffrida R, Aragona E, Guarneri C. Evaluation of cutaneous surface parameters in psoriatic patients. Ski Res Technol. 2017;23:41–7.

    Article  Google Scholar 

  50. Delfino M, Russo N, Migliaccio G, Carraturo N. Experimental study on efficacy of thermal muds of Ischia Island combined with balneotherapy in the treatment of psoriasis vulgaris with plaques. Clin Ter. 2003;154:167–71.

    CAS  PubMed  Google Scholar 

  51. Levin J, Maibach H. The correlation between transepidermal water loss and percutaneous absorption: an overview. J Control release Elsevier. 2005;103:291–9.

    Article  CAS  Google Scholar 

  52. Tagami H. Interrelationship between water-barrier and reservoir functions of pathologic stratum corneum. Arch Dermatol. 1985;121:642.

    Article  CAS  PubMed  Google Scholar 

  53. Cork MJ, Danby S, Vasilopoulos Y, Moustafa M, MacGowan A, Varghese J, et al. Epidermal barrier dysfunction in atopic dermatitis. Textb Atopic Dermat. CRC Press; 2008. p. 47–70.

  54. Irvine AD, McLean WHI, Leung DYM. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med. Mass Medical Soc; 2011;365:1315–27.

  55. Nikam VN, Monteiro RC, Dandakeri S, Bhat RM. Transepidermal water loss in psoriasis: a case-control study. Indian Dermatol Online J. Wolters Kluwer--Medknow Publications; 2019;10:267.

  56. Lee Y, Je Y-J, Lee S-S, Li ZJ, Choi D-K, Kwon Y-B, et al. Changes in transepidermal water loss and skin hydration according to expression of aquaporin-3 in psoriasis. Ann Dermatol. 2012;24:168–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Davies DJ, Ward RJ, Heylings JR. Multi-species assessment of electrical resistance as a skin integrity marker for in vitro percutaneous absorption studies. Toxicol Vitr Elsevier. 2004;18:351–8.

    Article  CAS  Google Scholar 

  58. Gattu S, Maibach HI. Modest but increased penetration through damaged skin: an overview of the in vivo human model. Skin Pharmacol Physiol. 2010;24:2–9.

    Article  PubMed  Google Scholar 

  59. Chiang A, Tudela E, Maibach HI. Percutaneous absorption in diseased skin: an overview. J Appl Toxicol. 2012;32:537–63.

    Article  CAS  PubMed  Google Scholar 

  60. Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3:115–24.

    Article  CAS  PubMed  Google Scholar 

  61. Bakshi P, Vora D, Hemmady K. Banga AK. Iontophoretic skin delivery systems: Success and failures. Int J Pharm. Elsevier; 2020. p. 119584.

    Google Scholar 

  62. Coondoo A, Phiske M, Verma S, Lahiri K. Side-effects of topical steroids: A long overdue revisit. Indian Dermatol Online J. Wolters Kluwer--Medknow Publications; 2014;5:416.

  63. Ltd. C. Chemicalize - Instant Cheminformatics Solutions.

  64. Chang SL, Banga AK. Transdermal iontophoretic delivery of hydrocortisone from cyclodextrin solutions. J Pharm Pharmacol. 1998;50:635–40.

    Article  CAS  PubMed  Google Scholar 

  65. Wang Y, Allen LV, Li LC. Effect of sodium dodecyl sulfate on iontophoresis of hydrocortisone across hairless mouse skin. Pharm Dev Technol. 2000;5:533–42.

    Article  CAS  PubMed  Google Scholar 

  66. Wang Y, Allen LV, Li LC, Tu Y-H. Iontophoresis of hydrocortisone across hairless mouse skin: investigation of skin alteration. J Pharm Sci. 1993;82:1140–4.

    Article  CAS  PubMed  Google Scholar 

  67. Seth SC, Alien LV, Pinnamaraju P. Stability of hydrocortisone salts during iontophoresis. Int J Pharm. 1994;106:7–14.

    Article  CAS  Google Scholar 

  68. Herwadkar A, Banga AK. An update on the application of physical technologies to enhance intradermal and transdermal drug delivery. Ther Deliv. 2012;3:339–55.

    Article  CAS  PubMed  Google Scholar 

  69. Banga AK. Transdermal and Intradermal Delivery of Therapeutic Agents [Internet]. 1st Editio. Boca Raton: CRC Press; 2011. Available from: https://www.taylorfrancis.com/books/9781439805107

  70. Puri A, Murnane KS, Blough BE, Banga AK. Effects of chemical and physical enhancement techniques on transdermal delivery of 3-fluoroamphetamine hydrochloride. Int J Pharm. 2017;528:452–62.

    Article  CAS  PubMed  Google Scholar 

  71. Carr RD, Tarnowski WM. The corticosteroid reservoir: lack of physiologic and therapeutic significance. Arch Dermatol American Medical Association. 1966;94:639–42.

    Article  CAS  Google Scholar 

  72. Foreman MI, Clanachan I. A preliminary estimate of the energy requirement for steroid diffusion and binding within human stratum-corneum. Br J Dermatol. Oxford: Blackwell Science Ltd.; 1984. p. 709–10.

  73. James MP ea, Graham RM, English J. Percutaneous iontophoresis of prednisolone–a pharmacokinetic study. Clin Exp Dermatol. Wiley Online Library; 1986;11:54–61.

  74. Banga AK. Transdermal and intradermal delivery of therapeutic agents: application of physical technologies. CRC Press; 2011.

  75. Fini A, Bergamante V, Ceschel GC, Ronchi C, De Moraes CAF. Control of transdermal permeation of hydrocortisone acetate from hydrophilic and lipophilic formulations. AAPS PharmSciTech Springer. 2008;9:762–8.

    Article  CAS  Google Scholar 

  76. Ledger PW. Skin biological issues in electrically enhanced transdermal delivery. Adv Drug Deliv Rev. 1992;9:289–307.

    Article  CAS  Google Scholar 

  77. Gratieri T, Pujol-Bello E, Gelfuso GM, de Souza JG, Lopez RFV, Kalia YN. Iontophoretic transport kinetics of ketorolac in vitro and in vivo: demonstrating local enhanced topical drug delivery to muscle. Eur J Pharm Biopharm Elsevier. 2014;86:219–26.

    Article  CAS  Google Scholar 

  78. McNeill SC, Potts RO, Francoeur ML. Local enhanced topical delivery (LETD) of drugs: does it truly exist? Pharm Res Springer. 1992;9:1422–7.

    Article  CAS  Google Scholar 

Download references

Funding

Research reported in this publication was supported by CFD Research Corporation, under a Phase II grant (Grant #: 2R44FD005345-02) from the National Institutes of Health/Food and Drug Administration under the Small Business Innovation Research Program (SBIR).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Behnam Dasht Bozorg and Ajay K. Banga; Methodology: Behnam Dasht Bozorg and Sonalika A. Bhattaccharjee; Formal analysis and investigation: Behnam Dasht Bozorg and Sonalika A. Bhattaccharjee; Writing—original draft preparation: Behnam Dasht Bozorg and Sonalika A. Bhattaccharjee; Writing—review and editing: Ajay K. Banga and Mahadevabharath R. Somayaji; Funding acquisition: Mahadevabharath R. Somayaji; Resources: Ajay K. Banga and Mahadevabharath R. Somayaji; Supervision: Ajay K. Banga and Mahadevabharath R. Somayaji.

Corresponding author

Correspondence to Ajay K. Banga.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

The tissues utilized were procured by the National Disease Research Interchange (NDRI) with support from NIH grant U42OD11158. All NDRI consent forms and protocols are reviewed and approved by the Institutional Review Board at the University of Pennsylvania. All samples obtained through one of National Disease Research Interchange’s (NDRI’s) tissue acquisition sites had obtained informed consent in writing for the use of that tissue for research.

Consent for publication

The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors, and tissue source, National Disease Research Interchange (NDRI).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasht Bozorg, B., Bhattaccharjee, S.A., Somayaji, M.R. et al. Topical and transdermal delivery with diseased human skin: passive and iontophoretic delivery of hydrocortisone into psoriatic and eczematous skin. Drug Deliv. and Transl. Res. 12, 197–212 (2022). https://doi.org/10.1007/s13346-021-00897-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-00897-7

Keywords

Navigation