Skip to main content

Advertisement

Log in

In vitro and in vivo evaluation of cubosomal nanoparticles as an ocular delivery system for fluconazole in treatment of keratomycosis

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The objective of the present study was to enhance ocular antifungal activity of fluconazole (FCZ) in treatment of keratomycosis through incorporation into cubosomal nanoparticles. FCZ-loaded cubosomal dispersions were prepared by emulsification method according to 23 full factorial design. Design-Expert® software was used to study the effects of different formulation factors on properties of FCZ-loaded cubosomal dispersions and select the optimal formulation. Eight FCZ-loaded cubosomal dispersions were prepared and were in vitro and in vivo evaluated. In vitro, the results revealed that the optimum formula exhibited a mean particle size of 48.17 ± 0.65 nm and entrapped 85.70 ± 2.56% of FCZ. The ex vivo permeation study confirmed a two-fold enhancement in FCZ permeation through rabbit cornea compared to aqueous FCZ solution. Furthermore, in vivo ocular tolerance and histopathological studies proved the efficacy and safety FCZ-loaded cubosomal dispersion in treatment of induced keratomycosis in rats compared to aqueous FCZ solution after topical ocular application. In conclusion, the obtained results indicated that cubosomes could be promising ocular drug delivery system for enhancing antifungal activity of FCZ in treatment of fungal keratitis in rats.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Iyer SA, Tuli SS, Wagoner RC. Fungal keratitis: emerging trends and treatment outcomes. Eye Contact Lens. 2006;32(6):267–71. https://doi.org/10.1097/01.icl.0000249595.27520.2e.

    Article  Google Scholar 

  2. Gower EW, Keay LJ, Oechsler RA, Iovieno A, Alfonso EC, Jones DB, et al. Trends in fungal keratitis in the United States, 2001 to 2007. Ophthalmology. 2010;117(12):2263–7. https://doi.org/10.1016/j.ophtha.2010.03.048.

    Article  Google Scholar 

  3. Kalkanci A, Ozdek S. Ocular fungal infections. Curr Eye Res. 2011;36(3):179–89. https://doi.org/10.3109/02713683.2010.533810.

    Article  Google Scholar 

  4. Chien YW. Ocular drug delivery and delivery systems. In: Novel drug delivery systems. New York: Marcel Dekker; 1996. p. 269–70.

    Google Scholar 

  5. Meisner D, Mezei M. Liposome ocular delivery systems. Adv Drug Deliv Rev. 1995;16:75–93.

    Article  CAS  Google Scholar 

  6. Zimmer A, Kreuter J. Microspheres and nanoparticles used in ocular delivery systems. Adv Drug Deliv Rev. 1995;16:61–73.

    Article  CAS  Google Scholar 

  7. Yamaguchi M, Yasueda S, Isowaki A, Yamamoto M, Kimura M, Inada K, et al. Formulation of an ophthalmic lipid emulsion containing an anti-inflammatory steroidal drug, difluprednate. Int J Pharm. 2005;301:121–8.

    Article  CAS  Google Scholar 

  8. Han S, Shen JQ, Gan Y, Geng HM, Zhang XX, Zhu CL, et al. Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability. Acta Pharmacol Sin. 2010;31:990–8. https://doi.org/10.1038/aps.2010.98.

    Article  CAS  Google Scholar 

  9. Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular delivery: an overview. Int J Pharm. 2004;269:1–14. https://doi.org/10.1016/j.ijpharm.2003.09.016.

    Article  CAS  Google Scholar 

  10. Siekmann B, Bunjes H, Koch MHJ, Westesen K. Preparation and structural investigations of colloidal dispersions prepared from cubic monoglyceride-water phases. Int J Pharm. 2002;244:33–43. https://doi.org/10.1016/s0378-5173(02)00298-3.

    Article  CAS  Google Scholar 

  11. Gan L, Han S, Shen J, Zhu J, Zhu C, Zhang X, et al. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: improving preocular retention and ocular bioavailability. Int J Pharm. 2010;396:179–87. https://doi.org/10.1016/j.ijpharm.2010.06.015.

    Article  CAS  Google Scholar 

  12. Spicer PT, Hayden KL, Lynch ML, Ofori-Boateng A, Burnes JL. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir. 2001;17:5748–56. https://doi.org/10.1021/la010161w.

    Article  CAS  Google Scholar 

  13. Dian L, Yang Z, Li F, Wang Z, Pan X, Peng X, et al. Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study. Int J Nanomedicine. 2013;8:845–54. https://doi.org/10.2147/IJN.S40547.

    Article  CAS  Google Scholar 

  14. Li J, Wu L, Wu W, Wang B, Wang Z, Xin H, et al. A potential carrier based on liquid crystal nanoparticles for ophthalmic delivery of pilocarpine nitrate. Int J Pharm. 2013;455(1-2):75–84. https://doi.org/10.1016/j.ijpharm.2013.07.057.

    Article  CAS  Google Scholar 

  15. Luzzate V, Husson F. The structure of the liquid crystalline phases of lipid water system J. Cell. 1962;12:209–19.

    Google Scholar 

  16. Boyd BJ. Character of drug release from cubosomes using the pressure ultrafiltration method. Int J Pharm. 2003;260:239–47.

    Article  CAS  Google Scholar 

  17. Huang J, Peng T, Li Y, Zhan Z, Zeng Y, Huang Y, et al. Ocular cubosome drug delivery system for timolol maleate: preparation, characterization, cytotoxicity, ex vivo, and in vivo evaluation. AAPS PharmSciTech. 2017;18(8):2919–26.

    Article  CAS  Google Scholar 

  18. Ali Z, Sharma PK, Warsi MH. Fabrication and evaluation of ketorolac loaded cubosome for ocular drug delivery. J Appl Pharm Sci. 2016;6(09):204–8.

    Article  CAS  Google Scholar 

  19. Chen Y, Lu Y, Zhong Y, Wang Q, Wu W, Shen G. Ocular delivery of cyclosporine A based on glyceryl monooleate/poloxamer 407 liquid crystalline nanoparticles: preparation, characterization, in vitro corneal penetration and ocular irritation. J Drug Target. 2012;20(10):856–63.

    Article  CAS  Google Scholar 

  20. Novelli V, Holzel H. Safety and tolerability of fluconazole in children. Antimicrob Agents Chemother. 1999;43:1955–60.

    Article  CAS  Google Scholar 

  21. Magrath GN, Pulido JS, Montero J, Mason C, Wilson J. Cystoid macular edema secondary to fluconazole toxicity. Ocul Immunol Inflamm. 2010;18:472–4. https://doi.org/10.3109/09273948.2010.507320.

    Article  Google Scholar 

  22. Price MF, LaRocco MT, Gentry LO. Fluconazole susceptibilities of Candida species and distribution of species recovered from blood cultures over a 5-year period. Antimicrob Agents Chemother. 1994;38:1422–4.

    Article  CAS  Google Scholar 

  23. Abbasoğlu OE, Hoşal BM, Sener B, Erdemoğlu N, Gürsel E. Penetration of topical fluconazole into human aqueous humor. Exp Eye Res. 2001;72:147–51. https://doi.org/10.1006/exer.2000.0936.

    Article  CAS  Google Scholar 

  24. Behrens-Baumann W, Klinge B, Rüchel R. Topical fluconazole for experimental candida keratitis in rabbits. Br J Ophthalmol. 1990;74:40–2 https://doi.org/10.1136/bjo.74.1.40.

    Article  CAS  Google Scholar 

  25. Davies NM. Biopharmaceutical considerations in topical ocular drug delivery. Clin Exp Pharmacol Physiol. 2000;27:558–62. https://doi.org/10.1046/j.1440-1681.2000.03288.x.

    Article  CAS  Google Scholar 

  26. Sasaki H, Yamamura K, Mukai T, Nishida K, Nakamura J, Nakashima M, et al. Enhancement of ocular drug penetration. Crit Rev Ther Drug Carrier Syst. 1999;16:85–146.

    Article  CAS  Google Scholar 

  27. Habib FS, Fouad EA, Abdel-Rhaman MS, Fathalla D. Liposomes as an ocular delivery system of fluconazole: in-vitro studies. Acta Ophthalmol. 2010;88:901–4. https://doi.org/10.1111/j.1755-3768.2009.01584.x.

    Article  CAS  Google Scholar 

  28. Gonjari ID, Hosmani AH, Karmarkar AB, Godage AS, Kadam SB, Dhabale BN. Formulation and evaluation of in situ gelling thermoreversible mucoadhesive gel of fluconazole. Drug Discov Ther. 2009;3(1):6–9.

    CAS  Google Scholar 

  29. Gratieri T, Gelfuso GM, de Freitas O, Rocha EM, Lopez RFV. Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. Eur J Pharm Biopharm. 2011;79:320–7. https://doi.org/10.1016/j.ejpb.2011.05.006.

    Article  CAS  Google Scholar 

  30. Esposito E, Eblovi N, Rasi S, Drechsler M, Di Gregorio GM, Menegatti E, et al. Lipid-based supramolecular systems for topical application: a preformulatory study. AAPS PharmSci. 2003;5:62–76. https://doi.org/10.1016/j.jsps.2018.04.004.

    Article  Google Scholar 

  31. Chung H, Kim J, Um JY, Kwon IC, Jeong SY. Self-assembled nanocubi as a carrier for peroral insulin delivery. Diabetologia. 2002;45:448–51. https://doi.org/10.1007/s00125-001-0751-z.

    Article  CAS  Google Scholar 

  32. Teagarden DL, Anderson BD, Petre WJ. Determination of the pH-dependent phase distribution of prostaglandin E1 in a lipid emulsion by ultrafiltration. Pharm Res. 1988;5:482–7. https://doi.org/10.1023/a:1015961122982.

    Article  CAS  Google Scholar 

  33. Davtyan TK, Melikyan LA, Nikoyan NA, Aleksanyan HP, Grigoryan NG. Development and validation of Simple RP-HPLC Method for intracellular determination of fluconazole concentration and its application to the study of Candida albicans azole resistance. Int J Anal Chem. 2015:1–8. https://doi.org/10.1155/2015/576250.

  34. Saber S, Basuony M, Eldin S. Telmisartan ameliorates dextran sodium sulfate-induced colitis in rats by modulating NF-κB signalling in the context of PPARγ agonistic activity. Arch Biochem Biophys. 2019;671:185–95. https://doi.org/10.1016/j.abb.2019.07.014.

    Article  CAS  Google Scholar 

  35. Banchroft J, Stevens A, Turner D. Theory and practice of histological techniques. 4th ed. New York: Churchill Livingstone; 1996.

    Google Scholar 

  36. Nasr M, Ghorab MK, Abdelazem A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm Sin B. 2015;5(1):79–88. https://doi.org/10.1016/j.apsb.2014.12.001.

    Article  Google Scholar 

  37. Wyatt DM, Dorschel D. A cubic-phase delivery system composed of glyceryl monooleate and water for sustained release of water-soluble drugs. Pharm Technol. 1992;16:116–30. https://doi.org/10.1155/2014/815981.

    Article  CAS  Google Scholar 

  38. de Lima LS, Araujo MD, Quinàia SP, Migliorine DW, Garcia JR. Adsorption modeling of Cr, Cd and Cu on activated carbon of different origins by using fractional factorial design. Chem Eng J. 2011;166(3):881–9. https://doi.org/10.13168/AGG.2013.0035.

    Article  CAS  Google Scholar 

  39. Ahmad A, Alkharfy KM, Wani TA, Raish M. Application of Box-Behnken design for ultrasonic-assisted extraction of polysaccharides from Paeonia emodi. Int J Biol Macromol. 2015;72:990–7. https://doi.org/10.1016/j.ijbiomac.2014.10.011.

    Article  CAS  Google Scholar 

  40. Nazaruk E, Majkowska-Pilip A, Bilewicz R. Lipidic cubic-phase nanoparticles-cubosomes for efficient drug delivery to cancer cells. Chempluschem. 2017;82:570–5. https://doi.org/10.1002/cplu.201600534.

    Article  CAS  Google Scholar 

  41. Sharma R, Kaur G, Kapoor DK. Fluconazole loaded cubosomal vesicles for topical delivery. Int J Drug Dev Res. 2015;7(3):32–41.

    Google Scholar 

  42. Gaballa SA, El Garhy OH, Abdelkader H. Cubosomes: composition, preparation, and drug delivery applications. J Adv Biomed Pharm Sci. 2020;3(1):1–9. https://doi.org/10.21608/jabps.2019.16887.1057.

    Article  Google Scholar 

  43. Younes NF, Abdel-Halim SA, Elassasy AI. Corneal targeted sertaconazole nitrate loaded cubosomes: preparation, statistical optimization, in vitro characterization, ex vivo permeation and in vivo studies. Int J Pharm. 2018;553(1-2):386–97. https://doi.org/10.1016/j.ijpharm.2018.10.057.

    Article  CAS  Google Scholar 

  44. Verma P, Ahuja M. Cubic liquid crystalline nanoparticles: optimization and evaluation for ocular delivery of tropicamide. Drug Deliv. 2016;23(8):3043–54. https://doi.org/10.3109/10717544.2016.1143057.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Nasr.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasr, M., Teiama, M., Ismail, A. et al. In vitro and in vivo evaluation of cubosomal nanoparticles as an ocular delivery system for fluconazole in treatment of keratomycosis. Drug Deliv. and Transl. Res. 10, 1841–1852 (2020). https://doi.org/10.1007/s13346-020-00830-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00830-4

Keywords

Navigation