Skip to main content
Log in

A chitosan film containing quercetin-loaded transfersomes for treatment of secondary osteoporosis

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Osteoporosis, due to its prevalence worldwide, is a serious health problem. Topical administration of quercetin, a phytoestrogen, in the form of deformable transfersomes, could be used to treat osteoporosis to overcome its low oral solubility and bioavailability. Formulation process of transfersomes was screened by fractional factorial design and further optimized using full factorial design. Transfersomes showed good characteristics such as entrapment efficiency, particle size, zeta potential, and polydispersity index (83.0 ± 2.2%, 75.95 ± 2 nm, − 13.6 ± 6 mv and 0.333, respectively). Transfersomes were further loaded into chitosan film and showed good permeation through rat skin. Further, glucocorticoid-induced osteoporosis rat model showed induction of osteoporosis after day 30. On day 45, treatment with chitosan film containing quercetin-loaded transfersomes showed remarkable rise in femur thickness, length, density as well as in serum biochemical parameters such as calcium, phosphorous, alkaline phosphatase, and tartrate-resistant alkaline phosphatase compared to positive control group. Tensile strength of osteoporotic femur bone was also found to be increased and was comparable with normal group. Histomicrographic analysis of femur bone exhibited less disruptive and lytic changes. Thus, all the above findings indicated the beneficial effects of quercetin-loaded transfersome chitosan film, due to decline in osteoclastogenesis and osteoblast apoptosis, which further favored increase in osteoblast numbers and mineralization of bones. Thus, chitosan film containing quercetin-loaded transfersomes was found to be good alternative to oral administration of quercetin to treat osteoporosis, while easy applicability of film in the form of wrist band anytime, anywhere, and even at work achieve patient compliance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Khosla S, Hofbauer LC. Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diebetes Endocrinol. 2017;11:898–907. https://doi.org/10.1016/S2213-8587(17)30188-2.

    Article  Google Scholar 

  2. Shirwaikar A, Khan S, Malini S. Antiosteoporotic effect of ethanol extract of Cissus quadrangularis Linn. on ovariectomized rat. J Ethnopharmacol. 2003;89:245–50.

    Article  PubMed  Google Scholar 

  3. Briot K. Bone and glucocorticoids. Ann Endocrinol. 2018;79(3):115–8. https://doi.org/10.1016/j.ando.2018.04.0160003-4266.

    Article  Google Scholar 

  4. Canalis E, Delany AM. Mechanism of glucocorticoid action in bone. Ann N Y Acad Sci. 2002;966:73–81.

    Article  CAS  PubMed  Google Scholar 

  5. Briot K, Roux C. Glucocorticoid-induced osteoporosis. RMD Open. 2015;1(1):e000014. https://doi.org/10.1136/rmdopen-2014-000014.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Derakhshanian H, Djalali M, Djazayery A, Nourijelyani K, Ghadbeigi S, Pishva H, et al. Quercetin prevents experimental glucocorticoid-induced osteoporosis: a comparative study with alendronate. Can J Physiol Pharmacol. 2013;91:380–5. https://doi.org/10.1139/cjpp-2012-0190.

    Article  CAS  PubMed  Google Scholar 

  7. Chen JS, Sambrook PN. Antiresorptive therapies for osteoporosis: a clinical overview. Nat Rev Endocrinol. 2012;8:81–91. https://doi.org/10.1038/nrendo.2011.146.

    Article  CAS  Google Scholar 

  8. Haas AV, LeBoff MS. Osteoanabolic agents for osteoporosis. J Endocr Soc. 2018;2(8):922–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pandey MK, Gupta SC, Karelia D, Gilhooley PJ, Shakibaei M, Aggarwal BB. Dietary nutraceuticals as backbone for bone health. Biotechnol Adv. 2018;36(6):1633–48. https://doi.org/10.1016/j.biotechadv.2018.03.014.

    Article  CAS  PubMed  Google Scholar 

  10. Prouillet C, Mazière JC, Mazière C, Wattel A, Brazier M, Kamel S. Stimulatory effect of naturally occurring flavanols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem Pharmacol. 2004;67:1307–13. https://doi.org/10.1016/j.bcp.2003.11.009.

    Article  CAS  PubMed  Google Scholar 

  11. Wong RW, Rabie AB. Effect of quercetin on bone formation. J Orthop Res. 2008;26:1061–6. https://doi.org/10.1002/jor.20638.

    Article  CAS  PubMed  Google Scholar 

  12. Rai S, Pandey V, Rai G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: the state of the art. Nano Rev Exp. 2017;8(1):1325708. https://doi.org/10.1080/20022727.2017.1325708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bavarsad N, Kouchak M, Mohamadipour P, Sadeghi NB. Preparation and physicochemical characterization of topical chitosan-based film containing griseofulvin-loaded liposomes. J Adv Pharm Technol Res. 2016;7(3):91–8. https://doi.org/10.4103/2231-4040.184591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zeb A, Qureshi OS, Kim HS, Cha JH, Kim HS, Kim JK. Improved skin permeation of methotrexate via nanosized ultradeformable liposomes. Int J Nanomedicine. 2016;11:3813–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matucci-Cerinic M, Marabini S, Jantsch S, Cagnoni M, Partsch G. Effects of capsaicin on the metabolism of rheumatoid arthritis synoviocytes in vitro. Ann Rheum Dis. 1990;49(8):598–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Souza AC, Goto GEO, Mainardi JA, Coelho ACV, Tadini CC. Cassava starch composite films incorporated with cinnamon essential oil: antimicrobial activity, microstructure, mechanical and barrier properties. LWT Food Sci Technol. 2013;54:346–52.

    Article  CAS  Google Scholar 

  17. Thakur R, Jain N, Pathak R, Sandhu SS. Practices in wound healing studies of plants. Evid Based Complement Altern Med. 2011;438056:1–17. https://doi.org/10.1155/2011/438056.

    Article  Google Scholar 

  18. Aswar UM, Mohan V, Bodhankar SL. Antiosteoporotic activity of phytoestrogen-rich fraction separated from ethanol extract of aerial parts of Cissus quadrangularis in overiectomizedrats. Indian J Pharm. 2012;44:345–50. https://doi.org/10.4103/0253-7613.96310.

    Article  Google Scholar 

  19. Potu BK, Rao MS, Nampurath GK, Chamallamudi MR, Prasad K, Nayak SR, et al. Evidence-based assessment of antiosteoporotic activity of petroleum-ether extract of Cissus quadrangularis Linn. on ovariectomy-induced osteoporosis. Ups J Med Sci. 2009;114:140–8. https://doi.org/10.1080/03009730902891784.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Patricia B, Pedro C, Ana RM, Bruno S, Manuela P. Development and characterization of chitosan microparticles-in-films for buccal delivery of bioactive peptides. Pharm. 2019;12(32):1–15. https://doi.org/10.3390/ph12010032.

    Article  CAS  Google Scholar 

  21. Ji JJ, Ding ZJ, Yang XL. Preparation and properties of chitosan film as a drug sustained-release system. Hua Xi Kou Qiang Yi Xue Za Zhi. 2009;27(3):248–51.

    CAS  PubMed  Google Scholar 

  22. Han SB, Kwon SS, Jeong YM, Yu ER, Park SN. Physical characterization and in vitro skin permeation of solid lipid nanoparticles for transdermal delivery of quercetin. Int J Cosmet Sci. 2014;36(6):588–97. https://doi.org/10.1111/ics.12160.

    Article  CAS  PubMed  Google Scholar 

  23. Kajbafvala A, Salabat A, Salimi A. Formulation, characterization, and in-vitro/ex vivo evaluation of quercetin-loaded microemulsion for topical application. Pharm Dev Technol. 2018;23(8):741–50. https://doi.org/10.1080/10837450.2016.1263995.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Ohtsuka-Isoya M, Shao P, Sakamoto S, Shinoda H. Effects of methylprednisolone on bone formation and resorption in rats. Jpn J Pharmacol. 2002;90:236–46.

    Article  CAS  PubMed  Google Scholar 

  25. Liu XY, Shi JH, Du WH, Fan YP, Hu XL, Zhang CC, et al. Glucocorticoids decrease body weight and food intake and inhibit appetite regulatory peptide expression in the hypothalamus of rats. Exp Ther Med. 2011;2(5):977–84. https://doi.org/10.3892/etm.2011.292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liang W, Luo Z, Ge S, Li M, Du J, Yang M, et al. Oral administration of quercetin inhibits bone loss in rat model of diabetic osteopenia. Eur J Pharmacol. 2011;670(1):317–24. https://doi.org/10.1016/j.ejphar.2011.08.014.

    Article  CAS  PubMed  Google Scholar 

  27. Ferreira A, Alho I, Casimiro S, Costa L. Bone remodeling markers and bone metastases: from cancer research to clinical implications. Bonekey Rep. 2015;4:668. https://doi.org/10.1038/bonekey.2015.35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fink HA, Litwack-Harrison S, Taylor BC, Bauer DC, Orwoll ES, Lee CG, et al. Osteoporotic fractures in men (MROS) study group. Osteoporos Int. 2016;27(1):331–8.

    Article  CAS  PubMed  Google Scholar 

  29. Halleen JM, Alatalo SL, Suominen H, Cheng S, Janckila AJ, Väänänen HK. Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res. 2000;15:1337–45. https://doi.org/10.1359/jbmr.2000.15.7.1337.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao J, Li Y, Zhang H, Shi D, Li Q, Meng Y, et al. Preventive effects of metformin on glucocorticoid-induced osteoporosis in rats. J Bone Miner Metab. 2019;37:805–14. https://doi.org/10.1007/s00774-019-00989-y.

    Article  CAS  PubMed  Google Scholar 

  31. Masuhara M, Tsukahara T, Tomita K, Furukawa M, Miyawaki S, Sato T. A relation between osteoclastogenesis inhibition and membrane type estrogen receptor GPR30. Biochem Biophys Rep. 2016;8:389–94. https://doi.org/10.1016/j.bbrep.2016.10.013.

    Article  PubMed  PubMed Central  Google Scholar 

  32. DBJ F, Pizziolo VR, Oliveira TT, Matta SLP, Píccolo MS, Queiroz JH. Biometric, histomorphometric, and biochemical profile in atorvastatin calcium treatment of female rats with dexamethasone-induced osteoporosis. Rev Bras Ortop. 2018;53(5):607–13.

    Article  Google Scholar 

  33. Sunita P, Pattanayak SP. Phytoestrogens in postmenopausal indications: a theoretical perspective. Pharmacogn Rev. 2011;5(9):41–7. https://doi.org/10.4103/0973-7847.79098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wattel A, Kamel S, Prouillet C, Petit JP, Lorget F, Offord E, et al. Flavonoid quercetin decreases osteoclastic differentiation induced by RANKL via a mechanism involving NF kappa B and AP-1. J Cell Biochem. 2004;15(92):285–95.

    Article  Google Scholar 

  35. Yamaguchi M, Weitzmann MN. Quercetin, a potent suppressor of NF-κB and Smad activation in osteoblasts. Int J Mol Med. 2011;28:521–5. https://doi.org/10.3892/ijmm.2011.749.

    Article  CAS  PubMed  Google Scholar 

  36. Wattel A, Kamel S, Mentaverri R, Lorget F, Prouillet C, Petit JP, et al. Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem Pharmacol. 2003;65(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  37. Mohd Effendy N, Mohamed N, Muhammad N, Mohamad IN, Shuid AN. The effects of tualang honey on bone metabolism of postmenopausal women. Evid Based Complement Alternat Med. 2012;2012:938574. https://doi.org/10.1155/2012/938574.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rosales Rocabado JM, Kaku M, Nozaki K, Ida T, Kitami M, Aoyagi Y, et al. A multi-factorial analysis of bone morphology and fracture strength of rat femur in response to ovariectomy. J Orthop Surg Res. 2018;13(1):318. https://doi.org/10.1186/s13018-018-1018-4.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chavassieux P, Pastoureau P, Chapuy MC, Delmas PD, Meunier PJ. Glucocorticoid-induced inhibition of osteoblastic bone formation in ewes: a biochemical and histomorphometric study. Osteoporos Int. 1993;3(2):97–102.

    Article  CAS  PubMed  Google Scholar 

  40. Compston J. Glucocorticoid-induced osteoporosis: an update. Endocrine. 2018;61(1):7–16. https://doi.org/10.1007/s12020-018-1588-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xing LZ, Ni HJ, Wang YL. Quercetin attenuates osteoporosis in ovariectomized rats by regulating mitogen-activated protein kinase (MAPK) signaling pathways. Biomed Pharmacother. 2017;89:1136–41. https://doi.org/10.1016/j.biopha.2017.02.073.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thanked Mohini Organics Pvt. Ltd., India, for providing gift sample of Tween 80 as well as Vav Lipids Pvt. Ltd., India, for generously providing phosphatidylcholine. Authors also thanked Preclinical Research And Development Organization (PRADO) for performing and guiding us on histomorphometric analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashlesha P. Pandit.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, A.P., Omase, S.B. & Mute, V.M. A chitosan film containing quercetin-loaded transfersomes for treatment of secondary osteoporosis. Drug Deliv. and Transl. Res. 10, 1495–1506 (2020). https://doi.org/10.1007/s13346-020-00708-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00708-5

Keywords

Navigation