Skip to main content

Advertisement

Log in

Inhalation of sustained release microparticles for the targeted treatment of respiratory diseases

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Delivering drugs through inhalation for systemic and local applications has been in practice since several decades to treat various diseases. In recent times, inhalation drug delivery is becoming one of the highly focused areas of research in the pharmaceutical industry. It is being considered as one of the major portals for delivering drugs because of its wide range of advantages like requirement of low concentrations of drug to reach therapeutic efficacy, surpassing first pass metabolism and a very low incidence of side effects as compared to conventional delivery of drugs. Owing to these favorable characteristics of pulmonary drug delivery, diverse pharmaceutical formulations like liposomes, nanoparticles, and microparticles are developed through consistent efforts for delivery drugs to lungs in suitable form. However, drug-loaded microparticles have displayed various advantages over the other pharmaceutical dosage forms which give a cutting edge over other inhalational drug delivery systems. Assuring results with respect to sustained release through inhalational delivery of drug-loaded microparticles from pre-clinical studies are anticipative of similar benefits in the clinical settings. This review centralizes partly on the advantages of inhalational microparticles over other inhalational dosage forms and largely on the therapeutic applications and future perspectives of inhalable microparticle drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stein SW, Thiel CG. The history of therapeutic aerosols: a chronological review. J Aerosol Med Pulm Drug Deliv. 2017;30(1):20–41.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sanders M. Inhalation therapy: an historical review. Prim Care Respir J. 2007;16(2):71–81.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee W-H, et al. Inhalation of nanoparticle-based drug for lung cancer treatment: advantages and challenges. Asian J Pharm Sci. 2015;10(6):481–9.

    Article  Google Scholar 

  4. Gonda I. Systemic delivery of drugs to humans via inhalation. J Aerosol Med. 2006;19(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  5. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  6. Agu RU, et al. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir Res. 2001;2(4):198.

    Article  CAS  PubMed  Google Scholar 

  7. Kim J, et al. Targeted delivery of liquid microvolumes into the lung. Proc Natl Acad Sci. 2015;112(37):11530–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mohanty RR, Das S. Inhaled insulin-current direction of insulin research. J Clin Diagn Res. 2017;11(4):OE01–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cukic V, Lovre V, Dragisic D, Ustamujic A. Asthma and chronic obstructive pulmonary disease (COPD)–differences and similarities. Materia socio-medica. 2012;24(2):100–5.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bautista SC, et al. Administration of anti-infective agents through the inhaled route. Farm Hosp. 2007;31(2):112.

    Article  CAS  Google Scholar 

  11. Zhou QT, et al. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev. 2015;85:83–99.

    Article  CAS  PubMed  Google Scholar 

  12. El-Sherbiny IM, El-Baz NM, Yacoub MH. Inhaled nano-and microparticles for drug delivery. Glob Cardiol Sci Pract. 2015;2015(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Labiris N, Dolovich M. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56(6):588–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Darquenne C. Aerosol deposition in health and disease. J Aerosol Med Pulm Drug Deliv. 2012;25(3):140–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ibrahim M, Verma R, Garcia-Contreras L. Inhalation drug delivery devices: technology update. Med Devices (Auckland, NZ). 2015;8:131.

    CAS  Google Scholar 

  16. Pandey R, Khuller G. Antitubercular inhaled therapy: opportunities, progress and challenges. J Antimicrob Chemother. 2005;55(4):430–5.

    Article  CAS  PubMed  Google Scholar 

  17. Ngan CL, Asmawi AA. Lipid-based pulmonary delivery system: a review and future considerations of formulation strategies and limitations. Drug Deliv Transl Res. 2018;8(5):1527–44.

    Article  CAS  PubMed  Google Scholar 

  18. Thomas RJ. Particle size and pathogenicity in the respiratory tract. Virulence. 2013;4(8):847–58.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Newman SP. Drug delivery to the lungs: challenges and opportunities. Ther Deliv. 2017;8(8):647–61.

    Article  CAS  PubMed  Google Scholar 

  20. Akbarzadeh A, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Shade CW. Liposomes as advanced delivery systems for nutraceuticals. Integrative Medicine: A Clinician's Journal. 2016;15(1):33.

    Google Scholar 

  22. Cosco D, et al. Liposomes as multicompartmental carriers for multidrug delivery in anticancer chemotherapy. Drug Deliv Transl Res. 2011;1(1):66–75.

    Article  CAS  PubMed  Google Scholar 

  23. Sercombe L, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Thulasiramaraju T, et al. Liposome: a novel drug delivery system. Int J Biochem. 2012;2229:7499.

    Google Scholar 

  25. Grit M, Crommelin DJ. Chemical stability of liposomes: implications for their physical stability. Chem Phys Lipids. 1993;64(1–3):3–18.

    Article  CAS  PubMed  Google Scholar 

  26. Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev. 2015;115(19):10938–66.

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez-Rothi RJ, et al. Liposomes and pulmonary alveolar macrophages: functional and morphologic interactions. Exp Lung Res. 1991;17(4):687–705.

    Article  CAS  PubMed  Google Scholar 

  28. Poelma D, Van Iwaarden J, Lachmann B. Surfactant metabolism: factors affecting lipid uptake in vivo and in vitro, in Anaesthesia, Pain, Intensive Care and Emergency Medicine—APICE. Milano: Springer; 2005. p. 259–77.

    Google Scholar 

  29. Schreier H, Gonzalez-Rothi RJ, Stecenko AA. Pulmonary delivery of liposomes. J Control Release. 1993;24(1–3):209–23.

    Article  CAS  Google Scholar 

  30. Pagano RE, Weinstein JN. Interactions of liposomes with mammalian cells. Annu Rev Biophys Bioeng. 1978;7(1):435–68.

    Article  CAS  PubMed  Google Scholar 

  31. Szebeni J, Barenholz Y. Adverse immune effects of liposomes: complement activation. Immunogenicity and Immune Suppression. 2009. https://www.ncbi.nlm.nih.gov/pubmed/21787819. Accessed 26 Jan 2018.

  32. Gregoriadis G, Florence AT. Liposomes in drug delivery. Drugs. 1993;45(1):15–28.

    Article  CAS  PubMed  Google Scholar 

  33. Elhissi A. Liposomes for pulmonary drug delivery: the role of formulation and inhalation device design. Curr Pharm Des. 2017;23(3):362–72.

    CAS  PubMed  Google Scholar 

  34. De Leo V, et al. Preparation of drug-loaded small unilamellar liposomes and evaluation of their potential for the treatment of chronic respiratory diseases. Int J Pharm. 2018;545(1-2):378–88.

    Article  PubMed  CAS  Google Scholar 

  35. Rashid J, et al. Fasudil and DETA NONOate, loaded in a peptide-modified liposomal carrier, slow PAH progression upon pulmonary delivery. Mol Pharm. 2018;15(5):1755–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Riaz MK, et al. Pulmonary delivery of transferrin receptors targeting peptide surface-functionalized liposomes augments the chemotherapeutic effect of quercetin in lung cancer therapy. Int J Nanomedicine. 2019;14:2879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mudshinge SR, et al. Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J. 2011;19(3):129–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012;14(2):282–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Warheit DB, Reed KL, Sayes CM. A role for nanoparticle surface reactivity in facilitating pulmonary toxicity and development of a base set of hazard assays as a component of nanoparticle risk management. Inhal Toxicol. 2009;21(sup1):61–7.

    Article  CAS  PubMed  Google Scholar 

  41. Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol. 2013;11(1):26.

    Article  CAS  Google Scholar 

  42. Bakand S, Hayes A. Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles. Int J Mol Sci. 2016;17(6):929.

    Article  PubMed Central  CAS  Google Scholar 

  43. Papageorgiou I, et al. The effect of nano-and micron-sized particles of cobalt–chromium alloy on human fibroblasts in vitro. Biomaterials. 2007;28(19):2946–58.

    Article  CAS  PubMed  Google Scholar 

  44. Song Y, Li X, Du X. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J. 2009;34(3):559–67.

    Article  CAS  PubMed  Google Scholar 

  45. Madhav NS, Kala S. Review on microparticulate drug delivery system. Int J PharmTech Res. 2011;3(3):1242–4.

    CAS  Google Scholar 

  46. Kemala T, Budianto E, Soegiyono B. Preparation and characterization of microspheres based on blend of poly (lactic acid) and poly (ɛ-caprolactone) with poly (vinyl alcohol) as emulsifier. Arab J Chem. 2012;5(1):103–8.

    Article  CAS  Google Scholar 

  47. Kohane DS. Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng. 2007;96(2):203–9.

    Article  CAS  PubMed  Google Scholar 

  48. Doodipala, N.R., Polymeric matrices at micro and nanoscale for ocular drug delivery. 2017.

    Google Scholar 

  49. Siepmann J, Siepmann F. Microparticles used as drug delivery systems. In: Smart colloidal materials. Berlin: Springer; 2006. p. 15–21.

    Chapter  Google Scholar 

  50. Heijerman H, et al. Inhaled medication and inhalation devices for lung disease in patients with cystic fibrosis: a European consensus. J Cyst Fibros. 2009;8(5):295–315.

    Article  CAS  PubMed  Google Scholar 

  51. Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res. 2008;25(8):1815–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hassan MS, Lau RWM. Effect of particle shape on dry particle inhalation: study of flowability, aerosolization, and deposition properties. AAPS PharmSciTech. 2009;10(4):1252–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cai Y, et al. Porous microsphere and its applications. Int J Nanomedicine. 2013;8:1111.

    PubMed  PubMed Central  Google Scholar 

  54. Zhou M, et al. Design and pharmaceutical applications of porous particles. RSC Adv. 2017;7(63):39490–501.

    Article  CAS  Google Scholar 

  55. Zdravkov BD, et al. Pore classification in the characterization of porous materials: a perspective. Cent Eur J Chem. 2007;5(2):385–95.

    CAS  Google Scholar 

  56. Edwards DA, Ben-Jebria A, Langer R. Recent advances in pulmonary drug delivery using large, porous inhaled particles. J Appl Physiol. 1998;85(2):379–85.

    Article  CAS  PubMed  Google Scholar 

  57. Edwards DA, et al. Large porous particles for pulmonary drug delivery. Science. 1997;276(5320):1868–72.

    Article  CAS  PubMed  Google Scholar 

  58. Tsapis N, et al. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci. 2002;99(19):12001–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jain A, Jain SK. In vitro release kinetics model fitting of liposomes: an insight. Chem Phys Lipids. 2016;201:28–40.

    Article  CAS  Google Scholar 

  60. D’Souza S. A review of in vitro drug release test methods for nano-sized dosage forms. Adv Pharm. 2014;2014:1–12.

    Google Scholar 

  61. Shazly G, Nawroth T, Langguth P. Comparison of dialysis and dispersion methods for in vitro release determination of drugs from multilamellar liposomes. Dissolut Technol. 2008;15(2):7.

    Article  CAS  Google Scholar 

  62. Han FY, et al. Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front Pharmacol. 2016;7:185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Faisant N, Siepmann J, Benoit J. PLGA-based microparticles: elucidation of mechanisms and a new, simple mathematical model quantifying drug release. Eur J Pharm Sci. 2002;15(4):355–66.

    Article  CAS  PubMed  Google Scholar 

  64. Jain R, et al. Drug Nano-particle: a release kinetics. Journal of Nanomedicine & Nanotechnology. 2015;6(5):1.

    Google Scholar 

  65. Pai RV, et al. Development and evaluation of chitosan microparticles based dry powder inhalation formulations of rifampicin and rifabutin. J Aerosol Med Pulm Drug Deliv. 2016;29(2):179–95.

    Article  CAS  PubMed  Google Scholar 

  66. Fourie PB, Oluwarotimi S. Inhaled therapies for tuberculosis: a viable approach for spray-dried drugs delivered by handheld dry powder inhaler. Inhalation. 2015;9:1–5.

    Google Scholar 

  67. Kjellsson MC, et al. Pharmacokinetic evaluation of the penetration of antituberculosis agents in rabbit pulmonary lesions. Antimicrob Agents Chemother. 2012;56(1):446–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sacks LV, et al. Adjunctive salvage therapy with inhaled aminoglycosides for patients with persistent smear-positive pulmonary tuberculosis. Clin Infect Dis. 2001;32(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  69. Suarez S, et al. Airways delivery of rifampicin microparticles for the treatment of tuberculosis. J Antimicrob Chemother. 2001;48(3):431–4.

    Article  CAS  PubMed  Google Scholar 

  70. Parikh R, Patel L, Dalwadi S. Microparticles of rifampicin: comparison of pulmonary route with oral route for drug uptake by alveolar macrophages, phagocytosis activity and toxicity study in albino rats. Drug Deliv. 2014;21(6):406–11.

    Article  CAS  PubMed  Google Scholar 

  71. Garcia Contreras L, et al. Pharmacokinetics of inhaled rifampicin porous particles for tuberculosis treatment: insight into rifampicin absorption from the lungs of guinea pigs. Mol Pharm. 2015;12(8):2642–50.

    Article  CAS  PubMed  Google Scholar 

  72. Garcia-Contreras L, et al. Pharmacokinetics of ethionamide delivered in spray-dried microparticles to the lungs of guinea pigs. J Pharm Sci. 2017;106(1):331–7.

    Article  CAS  PubMed  Google Scholar 

  73. Verma RK, et al. Inhaled microparticles containing clofazimine are efficacious in treatment of experimental tuberculosis in mice. Antimicrob Agents Chemother. 2013;57(2):1050–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Organization, WH. http://www.who.int/mediacentre/factsheets/fs340/en. 2014, Accessed.

  75. Torre LA, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    Article  PubMed  Google Scholar 

  76. Ferlay J, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

    Article  CAS  PubMed  Google Scholar 

  77. Zugazagoitia J, et al. Current challenges in cancer treatment. Clin Ther. 2016;38(7):1551–66.

    Article  PubMed  Google Scholar 

  78. Mokhtari RB, et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022.

    Article  PubMed Central  Google Scholar 

  79. Kyle AH, et al. Limited tissue penetration of taxanes: a mechanism for resistance in solid tumors. Clin Cancer Res. 2007;13(9):2804–10.

    Article  CAS  PubMed  Google Scholar 

  80. Kim I, et al. Doxorubicin-loaded highly porous large PLGA microparticles as a sustained-release inhalation system for the treatment of metastatic lung cancer. Biomaterials. 2012;33(22):5574–83.

    Article  CAS  PubMed  Google Scholar 

  81. Feng T, et al. Synergistic co-delivery of doxorubicin and paclitaxel by porous PLGA microspheres for pulmonary inhalation treatment. Eur J Pharm Biopharm. 2014;88(3):1086–93.

    Article  CAS  PubMed  Google Scholar 

  82. Sato T, et al. Intrapulmonary delivery of CpG microparticles eliminates lung tumors. Mol Cancer Ther. 2015;14(10):2198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhu L, et al. Inhalable oridonin-loaded poly (lactic-co-glycolic) acid large porous microparticles for in situ treatment of primary non-small cell lung cancer. Acta Pharm Sin B. 2017;7(1):80–90.

    Article  PubMed  Google Scholar 

  84. Education NA, et al. Section 2, Definition, pathophysiology and pathogenesis of asthma, and natural history of asthma, in Expert Panel Report 3: Guidelines for the Diagnosis and Management of Asthma. 2007, National Heart, Lung, and Blood Institute (US).

  85. Pawankar R. Allergic diseases and asthma: a global public health concern and a call to action. BioMed Central. 2014. 7(1):12, 1–3

  86. Barnes PJ. Development of new drugs for COPD. Curr Med Chem. 2013;20(12):1531–40.

    Article  CAS  PubMed  Google Scholar 

  87. Moral VP, Donaire JG. Inhaled therapy in asthma. Medicina Clínica (English Edition). 2016;146(7):316–23.

    Article  Google Scholar 

  88. Durham AL, et al. Targeted anti-inflammatory therapeutics in asthma and chronic obstructive lung disease. Transl Res. 2016;167(1):192–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dekhuijzen PR, et al. Incidence of oral thrush in patients with COPD prescribed inhaled corticosteroids: effect of drug, dose, and device. Respir Med. 2016;120:54–63.

    Article  PubMed  Google Scholar 

  90. Cooper V, et al. Patient-reported side effects, concerns and adherence to corticosteroid treatment for asthma, and comparison with physician estimates of side-effect prevalence: a UK-wide, cross-sectional study. NPJ Prim Care Respir Med. 2015;25:15026.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Patel B, et al. Low-molecular-weight heparin-coated and montelukast-filled inhalable particles: a dual-drug delivery system for combination therapy in asthma. J Pharm Sci. 2017;106(4):1124–35.

    Article  CAS  PubMed  Google Scholar 

  92. Oh YJ, et al. Preparation of budesonide-loaded porous PLGA microparticles and their therapeutic efficacy in a murine asthma model. J Control Release. 2011;150(1):56–62.

    Article  CAS  PubMed  Google Scholar 

  93. Yang W-K, et al. Effects of inhalable microparticles of Seonpyejeongcheon-tang in an asthma mouse model:-effects of microparticles of SJT. J Pharm. 2016;19(4):303–11.

    Google Scholar 

  94. Dufour G, Bigazzi W, Wong N, Boschini F, de Tullio P, Piel G, et al. Interest of cyclodextrins in spray-dried microparticles formulation for sustained pulmonary delivery of budesonide. Int J Pharm. 2015;495(2):869–78.

    Article  CAS  PubMed  Google Scholar 

  95. de Oliveira JF, et al. Therapeutic potential of biodegradable microparticles containing Punica granatum L.(pomegranate) in murine model of asthma. Inflamm Res. 2013;62(11):971–80.

    Article  PubMed  CAS  Google Scholar 

  96. Dhoble S, Patravale V. Development of anti-angiogenic erlotinib liposomal formulation for pulmonary hypertension: a QbD approach. Drug Deliv Transl Res. 2019: 9(5):1–17.

  97. Lai Y-C, et al. Pulmonary arterial hypertension: the clinical syndrome. Circ Res. 2014;115(1):115–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Raja SG, Raja SM. Treating pulmonary arterial hypertension: current treatments and future prospects. Ther Adv Chronic Dis. 2011;2(6):359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gupta V, et al. PLGA microparticles encapsulating prostaglandin E 1-hydroxypropyl-β-cyclodextrin (PGE 1-HPβCD) complex for the treatment of pulmonary arterial hypertension (PAH). Pharm Res. 2011;28(7):1733–49.

    Article  CAS  PubMed  Google Scholar 

  100. Gupta V, et al. Inhaled PLGA particles of prostaglandin E1 ameliorate symptoms and progression of pulmonary hypertension at a reduced dosing frequency. Mol Pharm. 2013;10(5):1655–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Anselmo AC, Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. J Control Release. 2014;190:15–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sánchez-Fueyo A, Strom TB. Immunologic basis of graft rejection and tolerance following transplantation of liver or other solid organs. Gastroenterology. 2011;140(1):51–64.e2.

    Article  PubMed  Google Scholar 

  103. Hartono C, Muthukumar T, Suthanthiran M. Immunosuppressive drug therapy. Cold Spring Harb Perspect Med. 2013;3(9):a015487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Iacono AT, et al. A randomized trial of inhaled cyclosporine in lung-transplant recipients. N Engl J Med. 2006;354(2):141–50.

    Article  PubMed  Google Scholar 

  105. Karimi-Shah BA, Chowdhury BA. Forced vital capacity in idiopathic pulmonary fibrosis—FDA review of pirfenidone and nintedanib. N Engl J Med. 2015;372(13):1189–91.

    Article  PubMed  Google Scholar 

  106. da Silva Bitencourt C, et al. Hyaluronidase-loaded PLGA microparticles as a new strategy for the treatment of pulmonary fibrosis. Tissue Eng A. 2014;21(1–2):246–56.

    Google Scholar 

Download references

Acknowledgments

The authors sincerely thank all of the research teams who contributed in the field of therapeutic applications of microparticle drug delivery system. We acknowledge DST-Science and Engineering Board-Early Career Research Award (SERB-ECR) Grant: ECR/2016/000007 and Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have significantly contributed to the concept and writing of manuscript.

Corresponding author

Correspondence to Chandraiah Godugu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulivendala, G., Bale, S. & Godugu, C. Inhalation of sustained release microparticles for the targeted treatment of respiratory diseases. Drug Deliv. and Transl. Res. 10, 339–353 (2020). https://doi.org/10.1007/s13346-019-00690-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-019-00690-7

Keywords

Navigation