Skip to main content

Advertisement

Log in

Total drug quantification in prodrugs using an automated elemental analyzer

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Polymeric prodrugs have become an increasingly popular strategy for improving the pharmacokinetic properties of active pharmaceutical ingredients (API). Therefore, identifying a robust method for quantification of the API in these prodrug products is a key part of the drug development process. Current drug quantification methods include hydrolysis followed by reversed phase high-performance liquid chromatography (RP-HPLC), size exclusion chromatography (SEC)-based molecular weight determination, and mass spectrometry. These methods tend to be time-consuming and often require challenging method development. Here, we present a comparative study highlighting the automated elemental analyzer as a facile approach to drug quantification in this up-and-coming class of therapeutics. A polymeric prodrug using poly(l-lysine succinylated) (PLS) and the drug lamivudine (LAM) was prepared and analyzed using the elemental analyzer in comparison to the traditional approaches of hydrolysis followed by RP-HPLC and SEC using multi-angle light scattering (MALS) detection. The elemental analysis approach showed excellent agreement with the conventional methods but proved much less laborious, highlighting this as a rapid and sensitive analytical method for the quantitative determination of drug loading in polymeric prodrug products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Koynova R, Tenchov B. Recent Progress in liposome production, relevance to drug delivery and nanomedicine. Recent Pat Nanotechnol. 2015;9(2):86–93.

    Article  CAS  Google Scholar 

  2. Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev. 2009;61(10):768–84. https://doi.org/10.1016/j.addr.2009.04.016.

    Article  CAS  PubMed  Google Scholar 

  3. Abd Ellah NH, Abouelmagd SA. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin Drug Deliv. 2017;14(2):201–14. https://doi.org/10.1080/17425247.2016.1213238.

    Article  CAS  PubMed  Google Scholar 

  4. Wadhwa S, Mumper RJ. Polymer-drug conjugates for anticancer drug delivery. Crit Rev Ther Drug Carrier Syst. 2015;32(3):215–45.

    Article  Google Scholar 

  5. Li C, Wallace S. Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev. 2008;60(8):886–98. https://doi.org/10.1016/j.addr.2007.11.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dragojevic S, Ryu JS, Raucher D. Polymer-based prodrugs: improving tumor targeting and the solubility of small molecule drugs in cancer therapy. Molecules. 2015;20(12):21750–69. https://doi.org/10.3390/molecules201219804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pang X, Jiang Y, Xiao Q, Leung AW, Hua H, Xu C. pH-responsive polymer-drug conjugates: design and progress. J Control Release. 2016;222:116–29. https://doi.org/10.1016/j.jconrel.2015.12.024.

    Article  CAS  PubMed  Google Scholar 

  8. Senanayake TH, Lu Y, Bohling A, Raja S, Band H, Vinogradov SV. Encapsulation of poorly soluble drugs in polymer-drug conjugates: effect of dual-drug nanoformulations on cancer therapy. Pharm Res. 2014;31(6):1605–15. https://doi.org/10.1007/s11095-013-1265-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chang M, Zhang F, Wei T, Zuo T, Guan Y, Lin G, et al. Smart linkers in polymer-drug conjugates for tumor-targeted delivery. J Drug Target. 2016;24(6):475–91. https://doi.org/10.3109/1061186X.2015.1108324.

    Article  CAS  PubMed  Google Scholar 

  10. Zou J, Yu Y, Li Y, Ji W, Chen CK, Law WC, et al. Well-defined diblock brush polymer-drug conjugates for sustained delivery of paclitaxel. Biomater Sci. 2015;3(7):1078–84. https://doi.org/10.1039/c4bm00458b.

    Article  CAS  PubMed  Google Scholar 

  11. Liu Z, Wang Y, Zhang N. Micelle-like nanoassemblies based on polymer-drug conjugates as an emerging platform for drug delivery. Expert Opin Drug Deliv. 2012;9(7):805–22. https://doi.org/10.1517/17425247.2012.689284.

    Article  CAS  PubMed  Google Scholar 

  12. Etrych T, Kovar L, Strohalm J, Chytil P, Rihova B, Ulbrich K. Biodegradable star HPMA polymer-drug conjugates: biodegradability, distribution and anti-tumor efficacy. J Control Release. 2011;154(3):241–8. https://doi.org/10.1016/j.jconrel.2011.06.015.

    Article  CAS  PubMed  Google Scholar 

  13. Sousa-Herves A, Wurfel P, Wegner N, Khandare J, Licha K, Haag R, et al. Dendritic polyglycerol sulfate as a novel platform for paclitaxel delivery: pitfalls of ester linkage. Nanoscale. 2015;7(9):3923–32. https://doi.org/10.1039/c4nr04428b.

    Article  CAS  PubMed  Google Scholar 

  14. Penugonda S, Kumar A, Agarwal HK, Parang K, Mehvar R. Synthesis and in vitro characterization of novel dextran-methylprednisolone conjugates with peptide linkers: effects of linker length on hydrolytic and enzymatic release of methylprednisolone and its peptidyl intermediates. J Pharm Sci. 2008;97(7):2649–64. https://doi.org/10.1002/jps.21161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abu-Fayyad A, Nazzal S. Synthesis, characterization, and in-vitro antitumor activity of the polyethylene glycol (350 and 1000) succinate derivatives of the tocopherol and tocotrienol isomers of vitamin E. Int J Pharm. 2017;519(1–2):145–56. https://doi.org/10.1016/j.ijpharm.2017.01.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Badawy SI, Williams RC, Gilbert DL. Chemical stability of an ester prodrug of a glycoprotein IIb/IIIa receptor antagonist in solid dosage forms. J Pharm Sci. 1999;88(4):428–33. https://doi.org/10.1021/js9803297.

    Article  CAS  PubMed  Google Scholar 

  17. Yoshikawa M, Endo H, Hoshino K, Sugawara Y, Takaiti O, Kanda S, et al. A new method for the high performance liquid chromatographic determination of TA-870, a dopamine prodrug (catechol ester compound). Biomed Chromatogr. 1990;4(5):181–7. https://doi.org/10.1002/bmc.1130040503.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang H, Wang J, Mao W, Huang J, Wu X, Shen Y, et al. Novel SN38 conjugate-forming nanoparticles as anticancer prodrug: in vitro and in vivo studies. J Control Release. 2013;166(2):147–58. https://doi.org/10.1016/j.jconrel.2012.12.019.

    Article  CAS  PubMed  Google Scholar 

  19. Yang JY, Zhang R, Pan HZ, Li YL, Fang YX, Zhang LB, et al. Backbone degradable N-(2-hydroxypropyl)methacrylamide copolymer conjugates with gemcitabine and paclitaxel: impact of molecular weight on activity toward human ovarian carcinoma xenografts. Mol Pharm. 2017;14(5):1384–94. https://doi.org/10.1021/acs.molpharmaceut.6b01005.

    Article  CAS  PubMed  Google Scholar 

  20. Veronese FM, Schiavon O, Pasut G, Mendichi R, Andersson L, Tsirk A, et al. PEG-doxorubicin conjugates: influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity. Bioconjug Chem. 2005;16(4):775–84. https://doi.org/10.1021/bc040241m.

    Article  CAS  PubMed  Google Scholar 

  21. Hussain MA, Abbas K, Amin M, Lodhi BA, Iqbal S, Tahir MN, et al. Novel high-loaded, nanoparticulate and thermally stable macromolecular prodrug design of NSAIDs based on hydroxypropylcellulose. Cellulose. 2015;22(1):461–71. https://doi.org/10.1007/s10570-014-0464-3.

    Article  CAS  Google Scholar 

  22. Culmo RF. The elemental analysis of various classes of chemical compounds using CHN: PerkinElmer Application Note.

  23. http://www.perkinelmer.com/product/2400-chns-o-series-ii-system-100v-n2410650. PerkinElmer Website. Accessed 17 May 2019.

  24. Fadeeva VP, Tikhova VD, Nikulicheva ON. Elemental analysis of organic compounds with the use of automated CHNS analyzers. J Anal Chem. 2008;63(11):1094–106. https://doi.org/10.1134/S1061934808110142.

    Article  CAS  Google Scholar 

  25. Inukai Y, Tanaka Y, Matsuda T, Mihara N, Yamada K, Nambu N, et al. Removal of boron(III) by N-methylglucamine-type cellulose derivatives with higher adsorption rate. Anal Chim Acta. 2004;511(2):261–5. https://doi.org/10.1016/j.aca.2004.01.054.

    Article  CAS  Google Scholar 

  26. Karnitz O, Gurgel LVA, de Freitas RP, Gil LF. Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). Carbohydr Polym. 2009;77(3):643–50. https://doi.org/10.1016/j.carbpol.2009.02.016.

    Article  CAS  Google Scholar 

  27. Shah KJ, Mishra MK, Shukla AD, Imae T, Shah DO. Controlling wettability and hydrophobicity of organoclays modified with quaternary ammonium surfactants. J Colloid Interface Sci. 2013;407:493–9. https://doi.org/10.1016/j.jcis.2013.05.050.

    Article  CAS  PubMed  Google Scholar 

  28. Hermanova S, Zarevucka M, Bousa D, Pumera M, Sofer Z. Graphene oxide immobilized enzymes show high thermal and solvent stability. Nanoscale. 2015;7(13):5852–8. https://doi.org/10.1039/c5nr00438a.

    Article  CAS  PubMed  Google Scholar 

  29. Matejovic I. Determination of carbon, hydrogen, and nitrogen in soils by automated elemental analysis (dry combustion method). Commun Soil Sci Plant Anal. 1993;24(17–18):2213–22. https://doi.org/10.1080/00103629309368950.

    Article  CAS  Google Scholar 

  30. Huang YF, Kuan WH, Lo SL, Lin CF. Total recovery of resources and energy from rice straw using microwave-induced pyrolysis. Bioresour Technol. 2008;99(17):8252–8. https://doi.org/10.1016/j.biortech.2008.03.026.

    Article  CAS  PubMed  Google Scholar 

  31. Sheykhan M, Ma'mani L, Ebrahimi A, Heydari A. Sulfamic acid heterogenized on hydroxyapatite-encapsulated gamma-Fe2O3 nanoparticles as a magnetic green interphase catalyst. J Mol Catal A Chem. 2011;335(1–2):253–61. https://doi.org/10.1016/j.molcata.2010.12.004.

    Article  CAS  Google Scholar 

  32. Li PH, Li BL, Hu HC, Zhao XN, Zhang ZH. Ionic liquid supported on magnetic nanoparticles as highly efficient and recyclable catalyst for the synthesis of beta-keto enol ethers. Catal Commun. 2014;46:118–22. https://doi.org/10.1016/j.catcom.2013.11.025.

    Article  CAS  Google Scholar 

  33. U.S. Provisional Application No. 62/572,733, filed October 16, 2017.

  34. PCT/US2018/55794, filed October 15, 2018.

  35. Hamid MHM, Elsaman T. A stability-indicating RP-HPLC-UV method for determination and chemical hydrolysis study of a novel naproxen prodrug. J Chem. 2017;5285671:10. https://doi.org/10.1155/2017/5285671.

    Article  Google Scholar 

  36. Bennett DB, Adams NW, Li X, Feijen J, Kim SW. Drug-coupled poly(amino acids) as polymeric prodrugs. J Bioact Compat Polym. 1988;3(1):44–52. https://doi.org/10.1177/088391158800300105.

    Article  CAS  Google Scholar 

  37. Li C, Wildes F, Winnard P, Artemov D, Penet MF, Bhujwalla ZM. Conjugation of poly-L-lysine to bacterial cytosine deaminase improves the efficacy of enzyme/prodrug cancer therapy. J Med Chem. 2008;51(12):3572–82. https://doi.org/10.1021/jm800288h.

    Article  CAS  PubMed  Google Scholar 

  38. Wang C, Tang F, Wang XY, Li LD. Synthesis and application of biocompatible gold core-poly-(L-lysine) shell nanoparticles. Colloid Surface A. 2016;506:425–30. https://doi.org/10.1016/j.colsurfa.2016.07.014.

    Article  CAS  Google Scholar 

  39. Sriram D, Yogeeswari P, Gopal G. Synthesis, anti-HIV and antitubercular activities of lamivudine prodrugs. Eur J Med Chem. 2005;40(12):1373–6. https://doi.org/10.1016/j.ejmech.2005.07.006.

    Article  CAS  PubMed  Google Scholar 

  40. Kim KH, Kim ND, Seong BL. Discovery and development of anti-HBV agents and their resistance. Molecules. 2010;15(9):5878–908. https://doi.org/10.3390/molecules15095878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hollander I, Kunz A, Hamann PR. Selection of reaction additives used in the preparation of monomeric antibody-calicheamicin conjugates. Bioconjug Chem. 2008;19(1):358–61. https://doi.org/10.1621/bc700321z.

    Article  CAS  PubMed  Google Scholar 

  42. Quiles S, Raisch KP, Sanford LL, Bonner JA, Safavy A. Synthesis and preliminary biological evaluation of high-drug-load paclitaxel-antibody conjugates for tumor-targeted chemotherapy. J Med Chem. 2010;53(2):586–94. https://doi.org/10.1021/jm900899g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ludlam PR, King JG. Size exclusion chromatography of urea formaldehyde resins in dimethylformamide containing lithium-chloride. J Appl Polym Sci. 1984;29(12):3863–72. https://doi.org/10.1002/app.1984.070291219.

    Article  CAS  Google Scholar 

Download references

Funding

This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Clogston.

Ethics declarations

Disclaimer

The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Stevens, D.M., Man, S. et al. Total drug quantification in prodrugs using an automated elemental analyzer. Drug Deliv. and Transl. Res. 9, 1057–1066 (2019). https://doi.org/10.1007/s13346-019-00649-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-019-00649-8

Keywords

Navigation