van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release. 2012;161:645–55.
Article
PubMed
Google Scholar
Haq MI, Smith E, John DN, Kalavala M, Edwards C, Anstey A, et al. Clinical administration of microneedles: skin puncture, pain and sensation. Biomed Microdevices. 2009;11:35–47.
CAS
Article
PubMed
Google Scholar
Kaushik S, Hord AH, Denson DD, McAllister DV, Smitra S, Allen MG, et al. Lack of pain associated with microfabricated microneedles. Anesth Analg. 2001;92:502–4.
CAS
Article
PubMed
Google Scholar
Kim Y-C, Park J-H, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64:1547–68.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ball AM, Smith KM. Optimizing transdermal drug therapy. Am J Health Syst Pharm. 2008;65:1337–46.
CAS
Article
PubMed
Google Scholar
Prausnitz MR, Gill HS, Park J-H. Microneedles for drug delivery, In: Modified release drug delivery. 2008, pp. 295-309.
Tanner T, Marks R. Delivering drugs by the transdermal route: review and comment. Skin Res Technol. 2008;14:249–60.
CAS
Article
PubMed
Google Scholar
Bal SM, Ding Z, van Riet E, Jiskoot W, Bouwstra J. Advances in transcutaneous vaccine delivery: do all ways lead to Rome? J Control Release. 2010;148:266–82.
CAS
Article
PubMed
Google Scholar
Nicolas J-F, Guy B. Intradermal, epidermal and transcutaneous vaccination: from immunology to clinical practice. Expert Rev Vaccines. 2008;7:1201–14.
Article
PubMed
Google Scholar
Subedi RK, Oh SY, Chun M-K, Choi H-K. Recent advances in transdermal drug delivery. Arch Pharm Res. 2010;33:339–51.
CAS
Article
PubMed
Google Scholar
Quinn HL, Kearney M-C, Courtenay AJ, McCrudden MT, Donnelly RF. The role of microneedles for drug and vaccine delivery. Expert Opin Drug Deliv. 2014;11:1769–80.
CAS
Article
PubMed
Google Scholar
Cheung K, Das DB. Microneedles for drug delivery: trends and progress, Drug Deliv. DOI: 10.3109/10717544.2014.986309 (2014) 1-17.
Indermun S, Luttge R, Choonara YE, Kumar P, Toit LC, Modi G, et al. Current advances in the fabrication of microneedles for transdermal delivery. J Control Release. 2014;185:130–8.
CAS
Article
PubMed
Google Scholar
Bodhale DW, Nisar A, Afzulpurkar N. Structural and microfluidic analysis of hollow side-open polymeric microneedles for transdermal drug delivery applications. Microfluid Nanofluid. 2010;8:373–92.
CAS
Article
Google Scholar
Davis SP, Martanto W, Allen MG, Prausnitz MR. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans Biomed Eng. 2005;52:909–15.
Article
PubMed
Google Scholar
Gardeniers HJGE, Luttge R, Berenschot EJW, Boer MJ, Yeshurun SY, Hefetz M, et al. Silicon micromachined hollow microneedles for transdermal liquid transport. J Microelectromech Syst. 2003;12:855–62.
Article
Google Scholar
Gupta J, Felner EI, Prausnitz MR. Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles. Diabetes Technol Ther. 2009;11:329–37.
CAS
Article
PubMed
PubMed Central
Google Scholar
Martanto W, Moore JS, Kashlan O, Kamath R, Wang PM, O'Neal JM, et al. Microinfusion using hollow microneedles. Pharm Res. 2006;23:104–13.
CAS
Article
PubMed
Google Scholar
McAllister DV, Wang PM, Davis SP, Park J-H, Canatella PJ, Allen MG, et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci. 2003;100:13755–60.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mukerjee EV, Collins SD, Isseroff RR, Smith RL. Microneedle array for transdermal biological fluid extraction and in situ analysis. Sensors Actuators A Phys. 2004;114:267–75.
CAS
Article
Google Scholar
van der Maaden K, Trietsch B, Kraan H, Varypataki EM, Romeijn S, Zwier R, et al. Novel hollow microneedle technology for depth controlled microinjection-mediated dermal vaccination: a study with polio vaccine in rats. Pharm Res. 2014;31:1846–54.
PubMed
Google Scholar
Wang PM, Cornwell M, Hill J, Prausnitz MR. Precise microinjection into skin using hollow microneedles. J Investig Dermatol. 2006;126:1080–7.
CAS
Article
PubMed
Google Scholar
Bal SM, Caussin J, Pavel S, Bouwstra JA. In vivo assessment of safety of microneedle arrays in human skin. J Control Release. 2008;35:193–202.
CAS
Google Scholar
Bal SM, Kruithof AC, Zwier R, Dietz E, Bouwstra JA, Lademann J, et al. Influence of microneedle shape on the transport of a fluorescent dye into human skin in vivo. J Control Release. 2010;147:218–24.
CAS
Article
PubMed
Google Scholar
Bal SM, Slütter B, Jiskoot W, Bouwstra JA. Small is beautiful: N-trimethyl chitosan-ovalbumin conjugates for microneedle-based transcutaneous immunisation. Vaccine. 2011;29:4025–32.
CAS
Article
PubMed
Google Scholar
Bal SM, Slütter B, Riet E, Kruithof AC, Ding Z, Kersten GFA, et al. Efficient induction of immune responses through intradermal vaccination with N-trimethyl chitosan containing antigen formulations. J Control Release. 2010;142:374–83.
CAS
Article
PubMed
Google Scholar
Chabri F, Bouris K, Jones T, Barrow D, Hann A, Allender C, et al. Microfabricated silicon microneedles for nonviral cutaneous gene delivery. Br J Dermatol. 2004;150:869–77.
CAS
Article
PubMed
Google Scholar
Henry S, McAllister DV, Allen MG, Prausnitz MR. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1998;87:922–5.
CAS
Article
PubMed
Google Scholar
Kalluri H, Kolli CS, Banga AK. Characterization of microchannels created by metal microneedles: formation and closure. AAPS J. 2011;13:473–81.
Article
PubMed
PubMed Central
Google Scholar
Li X, Zhao R, Qin Z, Zhang J, Zhai S, Qiu Y, et al. Microneedle pretreatment improves efficacy of cutaneous topical anesthesia. Am J Emerg Med. 2010;28:130–4.
CAS
Article
PubMed
Google Scholar
Slütter B, Bal SM, Zhi D, Jiskoot W, Bouwstra JA. Adjuvant effect of cationic liposomes and CpG depends on administration route. J Control Release. 2011;154:123–30.
Article
PubMed
Google Scholar
Verbaan FJ, Bal SM, van den Berg DJ, Groenink WHH, Verpoorten H, Lüttge R, et al. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J Control Release. 2007;117:238–45.
CAS
Article
PubMed
Google Scholar
Banks SL, Paudel KS, Brogden NK, Loftin CD, Stinchcomb AL. Diclofenac enables prolonged delivery of naltrexone through microneedle-treated skin. Pharm Res. 2011;28:1211–9.
CAS
Article
PubMed
PubMed Central
Google Scholar
van der Maaden K, Sekerdag E, Jiskoot W, Bouwstra J. Impact-insertion applicator improves reliability of skin penetration by solid microneedle arrays. AAPS J. 2014;16:681–5.
Article
PubMed
PubMed Central
Google Scholar
van der Maaden K, Yu H, Sliedregt K, Zwier R, Leboux R, Oguri M, et al. Nanolayered chemical modification of silicon surfaces with ionizable surface groups for pH-triggered protein adsorption and release: application to microneedles. J Mater Chem B. 2013;1:4466–77.
Article
Google Scholar
van der Maaden K, Varypataki EM, Romeijn S, Ossendorp F, Jiskoot W, Bouwstra J. Ovalbumin-coated pH-sensitive microneedle arrays effectively induce ovalbumin-specific antibody and T-cell responses in mice. Eur J Pharm Biopharm. 2014. doi:10.1016/j.ejpb.2014.05.003.
PubMed
Google Scholar
Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release. 2007;117:227–37.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gill HS, Soderholm J, Prausnitz MR, Salberg M. Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine. Gene Ther. 2010;17:811–4.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kim Y-C, Quan F-S, Compans RW, Kang S-M, Prausnitz MR. Formulation of microneedles coated with influenza virus-like particle vaccine. AAPS PharmSciTech. 2010;11:1193–201.
CAS
Article
PubMed
PubMed Central
Google Scholar
Matriano JA, Cormier M, Johnson J, Young WA, Buttery M, Nyam K, et al. Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm Res. 2002;19:63–70.
CAS
Article
PubMed
Google Scholar
Pearton M, Kang S-M, Song J-M, Kim Y-C, Quan F-S, Anstey A, et al. Influenza virus-like particles coated onto microneedles can elicit stimulatory effects on Langerhans cells in human skin. Vaccine. 2010;28:6104–13.
CAS
Article
PubMed
PubMed Central
Google Scholar
Widera G, Johnson J, Kim L, Libiran L, Nyam K, Daddona PE, et al. Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system. Vaccine. 2006;24:1653–64.
CAS
Article
PubMed
Google Scholar
Zhang Y, Brown K, Siebenaler K, Determan A, Dohmeier D, Hansen K. Development of lidocaine-coated microneedle product for rapid, safe, and prolonged local analgesic action. Pharm Res. 2011;29:170–7.
Article
PubMed
Google Scholar
Zhu Q, Zarnitsyn VG, Ye L, Wen Z, Gao Y, Pan L, et al. Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. Proc Natl Acad Sci. 2009;106:7968–73.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen X, Prow TW, Crichton ML, Jenkins DWK, Roberts MS, Frazer IH, et al. Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin. J Control Release. 2009;139:212–20.
CAS
Article
PubMed
Google Scholar
Edens C, Collins ML, Ayers J, Rota PA, Prausnitz MR. Measles vaccination using a microneedle patch. Vaccine. 2013;31:3403–9.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cormier M, Johnson B, Ameri M, Nyam K, Libiran L, Zhang DD, et al. Transdermal delivery of desmopressin using a coated microneedle array patch system. J Control Release. 2004;97:503–11.
CAS
Article
PubMed
Google Scholar
Kommareddy S, Baudner BC, Bonificio A, Gallorini S, Palladino G, Determan AS, et al. Influenza subunit vaccine coated microneedle patches elicit comparable immune responses to intramuscular injection in guinea pigs. Vaccine. 2013;31:3435–41.
CAS
Article
PubMed
Google Scholar
Chu LY, Choi S-O, Prausnitz MR. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs. J Pharm Sci. 2010;99:4228–38.
CAS
Article
PubMed
Google Scholar
Fukushima K, Ise A, Morita H, Hasegawa R, Ito Y, Sugioka N, et al. Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats. Pharm Res. 2011;28:7–21.
CAS
Article
PubMed
Google Scholar
Lee JW, Park J-H, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29:2113–24.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee K, Lee CY, Jung H. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials. 2011;32:3134–40.
CAS
Article
PubMed
Google Scholar
Migalska K, Morrow DIJ, Garland MJ, Thakur R, Woolfson AD, Donnelly RF. Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery. Pharm Res. 2011;28:1919–30.
CAS
Article
PubMed
Google Scholar
Raphael AP, Prow TW, Crichton ML, Chen X, Fernando GJP, Kendall MAF. Targeted, needle-free vaccinations in skin using multilayered, densely-packed dissolving microprojection arrays. Small. 2010;6:1785–93.
CAS
Article
PubMed
Google Scholar
Sullivan SP, Koutsonanos DG, Martin MP, Lee JW, Zarnitsyn V, Choi S-O, et al. Dissolving polymer microneedle patches for influenza vaccination. Nat Med. 2010;16:915–29.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ito Y, Yoshimitsu J-I, Shiroyama K, Sugioka N, Takada K. Self-dissolving microneedles for the percutaneous absorption of EPO in mice. J Drug Target. 2006;14:255–61.
CAS
Article
PubMed
Google Scholar
McGrath MG, Vucen S, Vrdoljak A, Kelly A, O’Mahony C, Moore A. Production of dissolvable microneedles using an atomised spray process: effect of microneedle composition on skin penetration. Eur J Pharm Biopharm. 2014;86:200–11.
Liu S, Jin M-n, Quan Y-s, Kamiyama F, Kusamori K, Katsumi H, et al. Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin. Eur J Pharm Biopharm. 2014;86:267–76.
CAS
Article
PubMed
Google Scholar
McCrudden MTC, Alkilani AZ, McCrudden CM, McAlister E, McCarthy HO, Woolfson AD, et al. Design and physicochemical characterisation of novel dissolving polymeric microneedle arrays for transdermal delivery of high dose, low molecular weight drugs. J Control Release. 2014;180:71–80.
CAS
Article
PubMed
PubMed Central
Google Scholar
Luttge R, Bystrova SN, van Bennekom JG, Domanski M, Loeters PWH, Lammertink RGH, AntoniusWinnubst AJ. Integrated microneedle array and a method for manufacturing thereof, WO2009/113856 (2013).
Mir J, Spoonhower J, Agostinelli JA, Demejo L, Sarbadhikari KK. Replaceable microneedle cartridge for biomedical monitoring, US 20110224515 A1 (2011).
Scholten D, Stumber M, Laermer F, Feyh A. Manufacturing method for a porous microneedle array and corresponding porous microneedle array and corresponding substrate composite, United States Patent Application 20110137254 (2011).
Shirkhanzadeh M. Arrays of microneedles comprising porous calcium phosphate coating and bioactive agents, WO/2003/092785 (2003).
Allen M, Cros F, McAllister D, Prausnitz M, Microneedle devices and methods of manufacture and use thereof, US2010312191 (A1) (2010).
Ciprian I, Luck TK, Hock TFE. Microneedles, WO2006101459 (A1) (2006).
Canham LT. Transferring materials into cells porous silicon, US2004220535 (A1) (2004).
Todd S, Middleton I. Microneedle device for removal of bodily fluid, GB2506010 (A) (2014).
Prausnitz MR, Allen MG, Gujral I-J. Microneedle device for extraction and sensing of bodily fluids, US7344499 B1 (2008).
Ji J, Tay FEH, Miao J, Iliescu C. Microfabricated microneedle with porous tip for drug delivery. J Micromech Microeng. 2006;16:958–64.
CAS
Article
Google Scholar
Park J-H, Choi S-O, Kamath R, Yoon Y-K, Allen MG, Prausnitz MR. Polymer particle-based micromolding to fabricate novel microstructures. Biomed Microdevices. 2007;9:223–34.
CAS
Article
PubMed
Google Scholar
Shirkhanzadeh M. Microneedles coated with porous calcium phosphate ceramics: effective vehicles for transdermal delivery of solid trehalose. J Mater Sci Mater Med. 2005;16:37–45.
CAS
Article
PubMed
Google Scholar
Bystrova S, Luttge R. Micromolding for ceramic microneedle arrays. Microelectron Eng. 2011;88:1681–4.
CAS
Article
Google Scholar
Verhoeven M, Bystrova S, Winnubst L, Qureshi H, Gruijl TD, Scheper RJ, et al. Applying ceramic nanoporous microneedle arrays as a transport interface in egg plants and an ex-vivo human skin model. Microelectron Eng. 2012;98:659–62.
CAS
Article
Google Scholar
Cai B, Xia W, Bredenberg S, Engqvist H. Self-setting bioceramic microscopic protrusions for transdermal drug delivery. J Mater Chem B. 2014;2:5992–8.
CAS
Article
Google Scholar
de Groot J, Verhoeven M, Rivas DF, de Gruij TD, Scheper RJ, Luttge R. Micromolded nanoporous ceramic microneedle arrays, 2nd International conference on Microneedles, 2012, Cork, Ireland.
Engqvist H, Bredenberg S, Pettersson A, Lundqvist T, Pahlgren A, Sagstrom A. Transdermal drug administration device, US 2013/0273119 A1 (2013).
Jäger C, Finkenberger B, Jäger W, Christophersen M, Carstensen J, Föll H. Transmission electron microscopy investigations of the formation of macropores in n- and p-Si(001)/(111). Mater Sci Eng B. 2000;69–70:199–204.
Article
Google Scholar
Salonen J, Kaukonen AM, Hirvonen J, Letho V-P. Mesoporous silicon in drug delivery applications. J Pharm Sci. 2007;97:632–53.
Article
Google Scholar
Low SP, Voelcker NH, Canham LT, Williams KA. The biocompatibility of porous silicon in tissues of the eye. Biomaterials. (2009).
Anderson SHC, Elliott H, Wallis DJ, Canham LT, Powell JJ. Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions, Phys Stat Sol. 2003;(a), 197.
Klyshko A, Balucani M, Ferrari A. Mechanical strength of porous silicon and its possible applications. Superlattice Microst. 2008;44:474–377.
Google Scholar
Paik S-J, Byun S, Lim J-M, Park Y, Lee A, Chung S, et al. In-plane single-crystal-silicon microneedles for minimally invasive microfluid systems. Sensors Actuators A Phys. 2004;2004:276–84.
Article
Google Scholar
McAllister DV, Wang PM, Davis SP, Park J-H, Canatella PJ, Allen MG, et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci U S A. 2003;100:13755–60.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zahn JD, Talbot NH, Liepmann D, Pisano AP. Microfabricated polysilicon microneedles for minimally invasive biomedical devices. Biomed Microdevices. 2000;2:295–303.
Article
Google Scholar
Arcos D, Vallet-Regí M. Bioceramics for drug delivery. Acta Mater. 2013;61:890–911.
CAS
Article
Google Scholar
Schaefer S, Detsch R, Uhl F, Deisinger U, Ziegler G. How degradation of calcium phosphate bone substitute materials is influenced by phase composition and porosity. Adv Eng Mater. 2011;13:342–50.
CAS
Article
Google Scholar
Komlev VS, Mastrogiacomo M, Pereira RC, Peyrin F, Rustichelli F, Cancedda R. Biodegradation of porous calcium phosphate scaffolds in an ectopic bone formation model studied by X-ray computed microtomography. Eur Cells Mater. 2010;19:136–46.
CAS
Google Scholar
Ding S-J, Wang C-W, Chen DC-H, Chang H-C. In vitro degradation behavior of porous calcium phosphates under diametral compression loading. Ceram Int. 2005;31:691–6.
CAS
Article
Google Scholar
Bose S, Darsell J, Hosick HL, Yang L, Sarkar DK, Bandyopadhyay A. Processing and characterization of porous alumina scaffolds. J Mater Sci. 2002;13:23–8.
CAS
Google Scholar
Kim Y-H, Anirban JM, Song H-Y, Seo H-S, Lee B-T. In vitro and in vivo evaluations of 3D porous TCP-coated and non-coated alumina scaffolds. J Biomater Appl. 2011;25:539–58.
CAS
Article
PubMed
Google Scholar
Walpole AR, Xia Z, Wilson CW, Triffitt JT, Wilshaw PR. A novel nano-porous alumina biomaterial with potential for loading with bioactive materials. J Biomed Mater Res Part A. 2009;90:46–54.
Article
Google Scholar
Szutkowska M. Fracture toughness of advanced alumina ceramics and alumina matrix composites used for cutting tool edges. J Achiev Mat Manuf Eng. 2012;54.
Ericson F, Johansson S, Schweitz J-Å. Hardness and fracture toughness of semiconducting materials studied by indentation and erosion techniques. Mater Sci Eng A. 1988;105–106:131–41.
Article
Google Scholar
Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials. 2001;22:1327–33.
CAS
Article
PubMed
Google Scholar
Verbaan FJ, Bal SM, van den Berg DJ, Dijksman JA, Hecke M, Verpoorten H, et al. Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. J Control Release. 2008;128:80–8.
CAS
Article
PubMed
Google Scholar
Donnelly RF, Garland MJ, Morrow DIJ, Migalska K, Singh TRR, Majithiya R, et al. Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution. J Control Release. 2010;147:333–41.
CAS
Article
PubMed
Google Scholar
Mohammed D, Matts PJ, Hadgraft J, Lane ME. Variation of stratum corneum biophysical and molecular properties with anatomic site. AAPS J. 2012;14:806–12.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pawlaczyk M, Lelonkiewicz M, Wieczorowski M. Age-dependent biomechanical properties of the skin. Postep Derm Alergol. 2013;30:302–6.
Article
Google Scholar
Sandy-Moller J, Poulsen T, Wulf HC. Epidermal thickness at different body sites: relationship to age gender, pigmentation, blood content, skin type and smoking habits. Acta Derm Venereol. 2003;83:410–3.
Article
Google Scholar
Waterston K, Naysmith L, Rees JL. Variation in skin thickness may explain some of the within-person variation in ultraviolet radiation-induced erythema at different body sites. J Investig Dermatol. 2005;124:1078–8.