Skip to main content
Log in

In vitro evaluation of polyethylene glycol based microparticles containing azithromycin

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The objectives of the present investigation are (1) to screen the liquid and solid polyethylene glycol (PEG) molecules able to produce microparticles by cold or hot dispersion method either with or without other excipients, and (2) to evaluate the in vitro activities [like thermodegradation at three different storage conditions, dissolution using a membrane-free dissolution model in artificial tear fluid or phosphate buffer solution of pH 7.4, and zone-inhibition assay using Eschericella coli and red blood cells (RBC) rupturing assay] of azithromycin (AZM)-loaded microparticles in comparison to AZM alone. Adding chitosan and propylene glycol into PEG 6000 led to the formation of spherical-shaped microparticles. Keeping the drug alone in phosphate buffer solution of pH 7.4 at three different storage conditions did show degradation and thus precipitation whereas incorporating the drug into microparticles did not. The microparticles showed a drug release profile that was completely in a retarded style when compared to the release profile of drug alone. The antimicrobial activity of AZM was not affected after incorporating it into microparticles as shown in the zone-inhibition assay. Nevertheless, the microparticles reduced markedly the RBC rupturing property of the drug in comparison to drug in phosphate buffer solution of pH 7.4 (hemolysis percentage values of 27.41 ± 4.1and 43.11 ± 7.6, respectively). This indicates that the microparticles prepared based on PEG, chitosan and propylene glycol could be of a suitable carrier to protect AZM from thermodegradation, to provide retardation in drug release, to preserve antimicrobial activity, and to reduce RBC rupturing effect of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 6th ed. London: Pharmaceutical Press; 2009. p. 517–22.

    Google Scholar 

  2. Lowman AM, Morishita M, Peppas NA, Nagai T. Novel bioadhesive complexation networks for oral protein drug delivery. In: McCulloch I, Shalaby SW, editors. Materials for controlled release applications. Washington, DC: American Chemical Society; 1998. p. 156–64.

    Google Scholar 

  3. Mohl S, Winter G. Continuous release of Rh-interferon alpha-2a from triglyceride matrices. J Control Release. 2004;97(1):67–78.

    Article  PubMed  CAS  Google Scholar 

  4. Wu J, Ge Q, Mather PT. PEG-POSS multiblock polyurethanes: synthesis, characterization and hydrogel formation. Macromolecules. 2010;43:7637–49.

    Article  CAS  Google Scholar 

  5. Morishita M, Goto T, Peppas NA, Joseph JI, Torjman MC, Munsick C, et al. Mucosal insulin delivery systems based on complexation polymer hydrogels: effect of particle size on insulin enteral absorption. J Control Release. 2004;97(1):67–78.

    Article  CAS  Google Scholar 

  6. Morçöl T, Nagappan P, Nerenbaum L, Mitchell A, Bell SJ. Calcium phosphate-PEG-insulin-casein (CAPIC) particles as oral delivery systems for insulin. Int J Pharm. 2004;277(1–2):91–7.

    Article  PubMed  CAS  Google Scholar 

  7. Jaiswal J, Gupta SK, Kreuter J. Preparation of biodegradable cyclosporine nanoparticles by high-pressure emulsion-solvent evaporation process. J Control Release. 2004;96(1):169–78.

    Article  PubMed  CAS  Google Scholar 

  8. Jung SW, Jeong YI, Kim YH, Kim SH. Self-assembled polymeric nanoparticles of poly(ethylene glycol) grafted pullulan acetate as a novel drug carrier. Arch Pharmacol Res. 2004;27(5):562–9.

    Article  CAS  Google Scholar 

  9. Peppas NA. Devices based on intelligent biopolymers for oral protein delivery. Int J Pharm. 2004;277(1–2):11–7.

    Article  PubMed  CAS  Google Scholar 

  10. Fiegel J, Fu H, Hanes J. Poly (ether-anhydride) dry powder aerosols for sustained drug delivery in the lungs. J Control Release. 2004;96(3):411–23.

    Article  PubMed  CAS  Google Scholar 

  11. Lueßen HL, Verhoef JC, Borchard G, Lehr CM, de Boer AG, Junginger HE. Mucoadhesive polymers in peroral peptide drug delivery: II. Carbomer and polycarbophil are potent inhibitors of the intestinal proteolytic enzyme trypsin. Pharm Res. 1995;12:1293–8.

    Article  PubMed  Google Scholar 

  12. Madsen F, Peppas NA. Complexation graft copolymer networks: swelling properties, calcium binding and proteolytic enzyme inhibition. Biomaterials. 1999;20:1701–8.

    Article  PubMed  CAS  Google Scholar 

  13. Bernkop-Schnürch A, Zarti H, Walker GF. Thiolation of polycarbophil enhances its inhibition of intestinal brush border membrane bound aminopeptidase N. J Pharm Sci. 2001;90:1907–14.

    Article  PubMed  Google Scholar 

  14. Harris JM, Martin NE, Modi M. 2001. Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet. 2001;40:539–51.

    Article  PubMed  CAS  Google Scholar 

  15. Bhadra D, Bhadra S, Jain P, Jain NK. Pegnology: a review of PEG-ylated systems. Pharmazie. 2002;57:5–29.

    PubMed  CAS  Google Scholar 

  16. Arguedas A, Soley C, Kamicker BJ, Jorgensen DM. Single-dose extended-release azithromycin versus a 10-day regimen of amoxicillin/clavulanate for the treatment of children with acute otitis media. Int J Infect Dis. 2011;15(4):e240–8.

    Article  PubMed  CAS  Google Scholar 

  17. Gillis RJ, Iglewski BH. Azithromycin retards Pseudomonas aeruginosa biofilm formation. J Clin Microbiol. 2004;42:5842–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Girard D, Bergeron JM, Milisen WB, Retsema JA. Comparison of azithromycin, roxithromycin, and cephalexin penetration kinetics in early and mature abscesses. J Antimicrob Chemother. 1993;31(Suppl E):17–28.

    Article  PubMed  CAS  Google Scholar 

  19. Sevillano D, Alou L, Aguilar L, Echevarría O, Giménez MJ, Prieto J. Azithromycin iv pharmacodynamic parameters predicting Streptococcus pneumoniae killing in epithelial lining fluid versus serum: an in vitro pharmacodynamic simulation. J Antimicrob Chemother. 2006;57(6):1128–33.

    Article  PubMed  CAS  Google Scholar 

  20. Bowman LM, Si E, Pang J, Archibald R, Friedlaender M. Development of a topical polymeric mucoadhesive ocular delivery system for azithromycin. J Ocul Pharmacol Ther. 2009;25(2):133–9.

    Article  PubMed  CAS  Google Scholar 

  21. Daebraker D, Visky D, Chepkwony HK, Van Schepdael A, Roets E, Hoogmartens J. Analysis of unknown compounds in azithromycin bulk samples with liquid chromatography coupled to ion trap mass spectrometry. Rapid Commun Mass Spectrom. 2003;17:342–50.

    Article  CAS  Google Scholar 

  22. Kuehne JJ, Yu ALT, Holland G, Ramaswamy A, Taban R, Mondino BJ, et al. Corneal pharmacokinetics of topically applied azithromycin and clarithromycin. Am J Ophthalmol. 2004;138:547–53.

    Article  PubMed  CAS  Google Scholar 

  23. McHugh RC, Rice A, Sangha ND, McCarty MA, Utterback R, Rohrback JM, et al. A topical azithromycin preparation for the treatment of acne vulgaris and rosacea. J Dermatol Treat. 2004;15:295–302.

    Article  CAS  Google Scholar 

  24. Rastogi R, Sultana Y, Ali A, Aqil M. Particulate and vesicular drug carriers in the management of tuberculosis. Curr Drug Deliv. 2006;3:121–8.

    Article  PubMed  CAS  Google Scholar 

  25. Paquette DW. Treating periodontal disease with local antimicrobials. Pract Proced Aesthet Dent. 2007;19:233–6.

    PubMed  Google Scholar 

  26. Pijls RT, Cruysberg LP, Nuijts RM, Dias AA, Koole LH. Capacity and tolerance of a new device for ocular drug delivery. Int J Pharm. 2007;16(341):152–61.

    Article  CAS  Google Scholar 

  27. Patel JK, Patel MM. Stomach specific anti-helicobacter pylori therapy: preparation and evaluation of amoxicillin-loaded chitosan mucoadhesive microspheres. Curr Drug Deliv. 2007;4:41–50.

    Article  PubMed  CAS  Google Scholar 

  28. Cochereau I, Meddeb-Ouertan A, Khairallah M, Amraoui A, Zaghloul K, Pop M, et al. 3-day treatment with azithromycin 1.5 % eye drops versus 7-day treatment with tobramycin 0.3 % for purulent bacterial conjunctivitis: multicentre, randomized and controlled trial in adults in children. Br J Ophthalmol. 2007;91:465–9.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Mohammadi G, Valizadeh H, Barzegar-Jalali M, Lotfipour F, Adibkia K, Milani M. Development of azithromycin-PLGA nanoparticles: physicochemical characterization and antibacterial effect against Salmonella typhi. Colloids Surf B Biointerfaces. 2010;80:34–9. doi:10.1016/j.colsurfb.2010.05.027.

    Article  PubMed  CAS  Google Scholar 

  30. Azhdarzadeh M, Lotfipour F, Zakeri-Milani P, Mohammadi G, Valizadeh H. Anti-bacterial performance of azithromycin nanoparticles as colloidal drug delivery system against different gram-negative and gram-positive bacteria. Adv Pharm Bull. 2012;2(1):17–24.

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Tamilvanan S, Khanum R, Senthilkumar SR, Muthuraman M, Rajasekharan T. Studies on ocular and parenteral application potentials of azithromycin-loaded anionic, cationic and neutral-charged emulsions. Curr Drug Deliv. 2013;10(572–586):2013.

    Google Scholar 

  32. Kwiecień A, Krzek J, Biniek Ł. TLC-densitometric determination of azithromycin in pharmaceutical preparations. J Planar Chromatogr. 2008;21(3):177–81.

    Article  CAS  Google Scholar 

  33. Tamilvanan S, Kumar BA. Influence of acetazolamide loading on the (in vitro) performances of non-phospholipid-based cationic nanosized emulsion in comparison with phospholipid-based anionic and neutral-charged nanosized emulsions. Drug Dev Ind Pharm. 2011;37:1003–15.

    Article  PubMed  CAS  Google Scholar 

  34. Moses RA. ADLER’S physiology of the eye clinical application. St. Louis, MO: The C.V. Mosby Company; 1981. p. 16–23.

    Google Scholar 

  35. Higuchi T. Mechanism of sustained-action medication: theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–9.

    Article  PubMed  CAS  Google Scholar 

  36. Shah MV, De Gennaro MD, Suryakasuma H. An evaluation of albumin microcapsules prepared using a multiple emulsion technique. J Microencapsul. 1987;4:223–38.

    Article  PubMed  CAS  Google Scholar 

  37. National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Approved Standard M7-A5. 5th ed. Wayne, PA: NCCLS; 2000.

    Google Scholar 

  38. Jaromin A, Zarnowski R, Kozubek A. Emulsions of oil from Adenanthera pavonina L. seeds and their protective effects. Cell Mol Biol Lett. 2006;11:438–48.

    Article  PubMed  CAS  Google Scholar 

  39. Barratt G. Colloidal drug carriers: achievements and perspectives. CMLS Cell Mol Life Sci. 2003;60:21–37.

    Article  CAS  Google Scholar 

  40. Lieberman HA, Riger MM, Banker GS, editors. Pharmaceutical dosage forms. Disperse systems, vol. 2. New York: Marcel Dekker Inc; 1998. p. 533–66.

    Google Scholar 

  41. Liu Z, Lv D, Liu S, Gong J, Wang D, Xiong M, et al. Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine: effect against breast cancer in mice. PLoS ONE. 2013;8(4):1–11. e60190.

    CAS  Google Scholar 

  42. Nagasaka Y, Ishii F. Interaction between erythrocytes from three different animals and emulsions prepared with various lecithins and oils. Colloids Surf B: Biointerfaces. 2001;22:141–7.

    Article  PubMed  CAS  Google Scholar 

  43. Jumaa M, Müller BW. Lipid emulsions as a novel system to reduce the hemolytic activity of lytic agents: mechanism of the protective effect. Eur J Pharm Sci. 2000;9:285–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The encouragement and support given by the managements of Lovely Professional University, Phagwara, Jalandhar, Punjab, India to perform this research work is acknowledged.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunmugaperumal Tamilvanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamilvanan, S., Kumar, V., Sharma, D. et al. In vitro evaluation of polyethylene glycol based microparticles containing azithromycin. Drug Deliv. and Transl. Res. 4, 139–148 (2014). https://doi.org/10.1007/s13346-013-0187-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-013-0187-2

Keywords

Navigation