Skip to main content

Advertisement

Log in

Magnetic nanoparticles and their applications in image-guided drug delivery

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Magnetic iron oxide nanoparticles have been shown to be suitable for use as theranostic agents owing to their intrinsic diagnostic capabilities in magnetic resonance imaging (MRI) applications, hyperthermia properties, and ability to deliver drugs via magnetic attraction and/or systemic delivery. In addition, surface modifications are easily introduced through conjugation with targeting moieties (e.g., antibodies, peptides, or aptamers), genes, or therapeutic drugs to provide multimodal functionalities. Such valuable characteristics apply to image-guided drug delivery, especially MRI-guided drug delivery—a form of individualized therapy in which imaging methods are used to guide and monitor delivery of therapeutic agents to target tissues. This review summarizes the intrinsic physicochemical properties and pharmacokinetics of magnetic nanoparticles and highlights recent reports describing theranostic systems, including magnetic nanoparticle-based nanoplatforms, and their applications in MRI-guided drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11:2319–31.

    Article  PubMed  CAS  Google Scholar 

  2. Bonnemain B. Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. J Drug Target. 1998;6:167–74.

    Article  PubMed  CAS  Google Scholar 

  3. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348:2491–9.

    Article  PubMed  Google Scholar 

  4. Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012;2:3–44.

    Google Scholar 

  5. Erathodiyil N, Ying JY. Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res. 2011;44:925–35.

    Article  PubMed  CAS  Google Scholar 

  6. Yang J, Wadghiri YZ, Hoang DM, Tsui W, Sun Y, Chung E, et al. Detection of amyloid plaques targeted by USPIO-Aβ1-42 in Alzheimer’s disease transgenic mice using magnetic resonance microimaging. NeuroImage. 2011;55:1600–9.

    Article  PubMed  Google Scholar 

  7. Lim SW, Kim HW, Jun HY, Park SH, Yoon KH, Kim HS, et al. TCL-SPION-enhanced MRI for the detection of lymph node metastasis in murine experimental model. Acad Radiol. 2011;18:504–11.

    Article  PubMed  Google Scholar 

  8. Tan M, Lu ZR. Integrin targeted MR imaging. Theranostics 2011;1:83–101.

    Google Scholar 

  9. Daldrup-Link HE, Golovko D, Ruffel B, Denardo D, Castaneda R, Ansari C, et al. MR imaging of tumor associated macrophages with clinically-applicable iron oxide nanoparticles. Clin Cancer Res. 2011;17:5695–704.

    Article  PubMed  CAS  Google Scholar 

  10. Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, et al. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev. 2011;111:253–80.

    Article  PubMed  CAS  Google Scholar 

  11. Solanki A, Kim JD, Lee KB. Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine. 2008;3:567–78.

    Article  PubMed  CAS  Google Scholar 

  12. Yang X, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Matson VZ, et al. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. ACS Nano. 2010;4:6805–17.

    Article  PubMed  CAS  Google Scholar 

  13. Chen GJ, Wang LF. Design of magnetic nanoparticles-assisted drug delivery system. Curr Pharm Des. 2011;17:2331–51.

    Article  PubMed  CAS  Google Scholar 

  14. Ho D, Sun X, Sun S. Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res. 2011;44:875–82.

    Article  PubMed  CAS  Google Scholar 

  15. Cheon J, Lee JH. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res. 2008;41:1630–40.

    Article  PubMed  CAS  Google Scholar 

  16. Jun YW, Lee JH, Cheon J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed Engl. 2008;47:5122–35.

    Article  PubMed  CAS  Google Scholar 

  17. Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60:1252–65.

    Article  PubMed  CAS  Google Scholar 

  18. Tandon P, Farahani K. NCI image-guided drug delivery summit. Cancer Res. 2011;71:314–7.

    Article  PubMed  CAS  Google Scholar 

  19. Thorek DL, Chen AK, Czupryna J, Tsourkas A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng. 2006;34:23–38.

    Article  PubMed  Google Scholar 

  20. Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc. 2005;127:5732–3.

    Article  PubMed  CAS  Google Scholar 

  21. Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med. 2007;13:95–9.

    Article  PubMed  CAS  Google Scholar 

  22. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263:1600–3.

    Article  PubMed  CAS  Google Scholar 

  23. Berry CC, Curtis ASG. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D: Appl Phys. 2003;36:R198–206.

    Article  CAS  Google Scholar 

  24. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.

    PubMed  CAS  Google Scholar 

  25. Xie J, Xu C, Kohler N, Hou Y, Sun S. Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater. 2007;19:3163–6.

    Article  CAS  Google Scholar 

  26. Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, et al. Superparamagnetic iron oxide—pharmacokinetic and toxicity. AJR Am J Roentgenol. 1989;152:167–73.

    PubMed  CAS  Google Scholar 

  27. Weissleder R, Elizondo G, Wittenberg J, Lee AS, Josephson L, Brady TJ. Ultrasmall superparamagnetic iron oxide—an intravenous contrast agent for assessing lymph-nodes with MR imaging. Radiology. 1990;175:494–8.

    PubMed  CAS  Google Scholar 

  28. Stark DD, Weissleder R, Elizondo G, Hahn PF, Saini S, Todd LE, et al. Superparamagnetic iron oxide—clinical application as a contrast agent for MR imaging of the liver. Radiology. 1988;168:297–301.

    PubMed  CAS  Google Scholar 

  29. Chastellain M, Petri A, Hofmann H. Superparamagnetic iron oxide nanoparticles for biomedical applications: a focus on PVA as a coating. Quantum Dots, Nanoparticles and Nanowires. 2004;789:269–72.

    Google Scholar 

  30. Liu HL, Ko SP, Wu JH, Jung MH, Min JH, Lee JH, et al. One-pot polyol synthesis of monosize PVP-coated sub-5 nm Fe3O4 nanoparticles for biomedical applications. J Magn Magn Mater. 2007;310:E815–7.

    Article  CAS  Google Scholar 

  31. Ma YH, Wu SY, Wu T, Chang YJ, Hua MY, Chen JP. Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. Biomaterials. 2009;30:3343–51.

    Article  PubMed  CAS  Google Scholar 

  32. Portet D, Denizot B, Rump E, Lejeune JJ, Jallet P. Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents. J Colloid Interface Sci. 2001;238:37–42.

    Article  PubMed  CAS  Google Scholar 

  33. Fauconnier N, Pons JN, Roger J, Bee A. Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J Colloid Interface Sci. 1997;194:427–33.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang C, Wangler B, Morgenstern B, Zentgraf H, Eisenhut M, Untenecker H, et al. Silica- and alkoxysilane-coated ultrasmall superparamagnetic iron oxide particles: a promising tool to label cells for magnetic resonance imaging. Langmuir. 2007;23:1427–34.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Z, Chao T, Chen SF, Jiang SY. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir. 2006;22:10072–7.

    Article  PubMed  CAS  Google Scholar 

  36. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today. 2007;2:22–32.

    Article  Google Scholar 

  37. Vonarbourg A, Passirani C, Saulnier P, Benoit JP. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials. 2006;27:4356–73.

    Article  PubMed  CAS  Google Scholar 

  38. Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater. 2005;293:483–96.

    Article  CAS  Google Scholar 

  39. Reimer P, Jähnke N, Fiebich M, Schima W, Deckers F, Marx C, et al. Hepatic lesion detection and characterization: value of nonenhanced MR imaging, superparamagnetic iron oxide-enhanced MR imaging, and spiral CT-ROC analysis. Radiology. 2000;217:152–8.

    PubMed  CAS  Google Scholar 

  40. Weissleder R, Elizondo G, Stark DD, Hahn PF, Marfil J, Gonzalez JF, et al. The diagnosis of splenic lymphoma by MR imaging: value of superparamagnetic iron oxide. AJR Am J Roentgenol. 1989;152:175–80.

    PubMed  CAS  Google Scholar 

  41. Schmitz SA, Coupland SE, Gust R, Winterhalter S, Wagner S, Kresse M, et al. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol. 2000;35:460–71.

    Article  PubMed  CAS  Google Scholar 

  42. Murillo TP, Sandquist C, Jacobs PM, Nesbit G, Manninger S, Neuwelt EA. Imaging brain tumors with ferumoxtran-10, a nanoparticle magnetic resonance contrast agent. Therapy. 2005;2:871–82.

    Article  CAS  Google Scholar 

  43. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001;41:189–207.

    Article  PubMed  CAS  Google Scholar 

  44. Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009;9:1909–15.

    Article  PubMed  CAS  Google Scholar 

  45. Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm. 2008;5:496–504.

    Article  PubMed  CAS  Google Scholar 

  46. Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul. 1996;13:245–55.

    Article  PubMed  CAS  Google Scholar 

  47. Park JH, von Maltzahn G, Zhang L, Derfus AM, Simberg D, Harris TJ, et al. Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small. 2009;5:694–700.

    Article  PubMed  CAS  Google Scholar 

  48. Jordan A, Scholz R, Wust P, Fähling H, Felix R. Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater. 1999;201:413–9.

    Article  CAS  Google Scholar 

  49. Hergt R, Dutz S, Müller R, Zeisberger M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter. 2006;18:S2919–34.

    Article  CAS  Google Scholar 

  50. Fortin JP, Wilhelm C, Servais J, Ménager C, Bacri JC, Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc. 2007;129:2628–35.

    Article  PubMed  CAS  Google Scholar 

  51. Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater. 2002;252:370–4.

    Article  CAS  Google Scholar 

  52. Lee JH, Jang JT, Choi JS, Moon SH, Noh SH, Kim JW, et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol. 2011;6:418–22.

    Article  PubMed  CAS  Google Scholar 

  53. Derfus AM, von Maltzahn G, Harris TJ, Duza T, Vecchio KS, Ruoslahti E, et al. Remotely triggered release from magnetic nanoparticles. Adv Mater. 2007;19:3932–6.

    Article  CAS  Google Scholar 

  54. Thomas CR, Ferris DP, Lee JH, Choi E, Cho MH, Kim ES, et al. Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J Am Chem Soc. 2010;132:10623–5.

    Article  PubMed  CAS  Google Scholar 

  55. Hergt R, Dutz S. Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J Magn Magn Mater. 2007;311:187–91.

    Article  CAS  Google Scholar 

  56. Ponce AM, Viglianti BL, Yu D, Yarmolenko PS, Michelich CR, Woo J, et al. Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects. J Natl Cancer Inst. 2007;99:53–63.

    Article  PubMed  CAS  Google Scholar 

  57. Viglianti BL, Abraham SA, Michelich CR, Yarmolenko PS, MacFall JR, Bally MB, et al. In vivo monitoring of tissue pharmacokinetics of liposome/drug using MRI: illustration of targeted delivery. Magn Reson Med. 2004;51:1153–62.

    Article  PubMed  CAS  Google Scholar 

  58. Langereis S, Keupp J, van Velthoven JL, de Roos IH, Burdinski D, Pikkemaat JA, et al. A temperature-sensitive liposomal 1H CEST and 19 F contrast agent for MR image-guided drug delivery. J Am Chem Soc. 2009;131:1380–1.

    Article  PubMed  CAS  Google Scholar 

  59. Aime S, Delli Castelli D, Terreno E. Highly sensitive MRI chemical exchange saturation transfer agents using liposomes. Angew Chem Int Ed Engl. 2005;44:5513–5.

    Article  PubMed  CAS  Google Scholar 

  60. de Smet M, Langereis S, van den Bosch S, Grüll H. Temperature-sensitive liposomes for doxorubicin delivery under MRI guidance. J Control Release. 2010;143:120–7.

    Article  PubMed  Google Scholar 

  61. Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 2000;60:6641–8.

    PubMed  CAS  Google Scholar 

  62. Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, et al. Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 1996;56:4686–93.

    PubMed  Google Scholar 

  63. Lübbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, Brock JW, et al. Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res. 1996;56:4694–701.

    PubMed  Google Scholar 

  64. Wilson MW, Kerlan Jr RK, Fidelman NA, Venook AP, LaBerge JM, Koda J, et al. Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/conventional angiography suite—initial experience with four patients. Radiology. 2004;230:287–93.

    Article  PubMed  Google Scholar 

  65. Mikhaylov G, Mikac U, Magaeva AA, Itin VI, Naiden EP, Psakhye I, et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotechnol. 2011;6:594–602.

    Article  PubMed  CAS  Google Scholar 

  66. Naiden EP, Zhuravlev VA, Itin VI, Terekhova OG, Magaeva AA, Ivanov Yu F. Magnetic properties and structural parameters of nanosized oxide ferrimagnet powders produced by mechanochemical synthesis from salt solutions. Phys Solid State. 2003;5:891–900.

    Google Scholar 

  67. Liu HL, Hua MY, Yang HW, Huang CY, Chu PC, Wu JS, et al. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci U S A. 2010;107:15205–10.

    Article  PubMed  CAS  Google Scholar 

  68. Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA, et al. Focal disruption of the blood–brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J Neurosurg. 2006;105:445–54.

    Article  PubMed  CAS  Google Scholar 

  69. Medarova Z, Pham W, Farrar C, Petkova V, Moore A. In vivo imaging of siRNA delivery and silencing in tumors. Nat Med. 2007;13:372–7.

    Article  PubMed  CAS  Google Scholar 

  70. Kumar M, Yigit M, Dai G, Moore A, Medarova Z. Image-guided breast tumor therapy using a small interfering RNA nanodrug. Cancer Res. 2010;70:7553–61.

    Article  PubMed  CAS  Google Scholar 

  71. Chen G, Chen W, Wu Z, Yuan R, Li H, Gao J, et al. MRI-visible polymeric vector bearing CD3 single chain antibody for gene delivery to T cells for immunosuppression. Biomaterials. 2009;30:1962–70.

    Article  PubMed  CAS  Google Scholar 

  72. Olenchock BA, Guo R, Carpenter JH, Jordan M, Topham MK, Koretzky GA, et al. Disruption of diacylglycerol metabolism impairs the induction of T cell anergy. Nat Immunol. 2006;7:1174–81.

    Article  PubMed  CAS  Google Scholar 

  73. Ling Y, Wei K, Luo Y, Gao X, Zhong S. Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials. 2011;32:7139–50.

    Article  PubMed  CAS  Google Scholar 

  74. Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, et al. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl. 2008;47:5362–5.

    Article  PubMed  CAS  Google Scholar 

  75. Dubertret B, Calame M, Libchaber AJ. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol. 2001;19:365–70.

    Article  PubMed  CAS  Google Scholar 

  76. Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S. Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small. 2011;7:2241–9.

    Article  PubMed  CAS  Google Scholar 

  77. Lim EK, Huh YM, Yang J, Lee K, Suh JS, Haam S. pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv Mater. 2011;23:2436–42.

    Article  PubMed  CAS  Google Scholar 

  78. Kaye AH, Morstyn G, Brownbill D. Adjuvant high dose photoradiation therapy in the treatment of cerebral glioma: a phase 1–2 study. J Neurosurg. 1987;67:500–5.

    Article  PubMed  CAS  Google Scholar 

  79. Stylli SS, Howes M, MacGregor L, Rajendra P, Kaye AH. Photodynamic therapy of brain tumours: evaluation of porphyrin uptake versus clinical outcome. J Clin Neurosci. 2004;11:584–96.

    Article  PubMed  CAS  Google Scholar 

  80. Jeong H, Huh M, Lee SJ, Koo H, Kwon IC, Jeong SY, Kim K. Photosensitizer-conjugated human serum albumin nanoparticles for effective photodynamic therapy. Theranostics. 2011;1:230–9.

    Google Scholar 

  81. Reddy GR, Bhojani MS, McConville P, Moody J, Moffat BA, Hall DE, et al. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res. 2006;12:6677–86.

    Article  PubMed  CAS  Google Scholar 

  82. Roth Y, Tichler T, Kostenich G, Ruiz-Cabello J, Maier SE, Cohen JS, et al. High-b-value diffusion-weighted MR imaging for pretreatment prediction and early monitoring of tumor response to therapy in mice. Radiology. 2004;232:685–92.

    Article  PubMed  Google Scholar 

  83. Hadjipanayis CG, Machaidze R, Kaluzova M, Wang L, Schuette AJ, Chen H, et al. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res. 2010;70:6303–12.

    Article  PubMed  CAS  Google Scholar 

  84. Raghavan R, Brady ML, Rodríguez-Ponce MI, Hartlep A, Pedain C, Sampson JH. Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus. 2006;20:E12.

    Article  PubMed  Google Scholar 

  85. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A. 1994;91:2076–80.

    Article  PubMed  CAS  Google Scholar 

  86. Hadjipanayis CG, Fellows-Mayle W, Deluca NA. Therapeutic efficacy of a herpes simplex virus in combination with radiation or temozolomide for intracranial glioblastoma after convection-enhanced delivery. Mol Ther. 2008;16:1783–8.

    Article  PubMed  CAS  Google Scholar 

  87. Palucka AK, Ueno H, Fay JW, Banchereau J. Taming cancer by inducing immunity via dendritic cells. Immunol Rev. 2007;220:129–50.

    Article  PubMed  CAS  Google Scholar 

  88. Melief CJ. Cancer immunotherapy by dendritic cells. Immunity. 2008;29:372–83.

    Article  PubMed  CAS  Google Scholar 

  89. Bae MY, Cho NH, Seong SY. Protective anti-tumour immune responses by murine dendritic cells pulsed with recombinant Tat-carcinoembryonic antigen derived from Escherichia coli. Clin Exp Immunol. 2009;157:128–38.

    Article  PubMed  CAS  Google Scholar 

  90. Chang E, Thekkek N, Yu WW, Colvin VL, Drezek R. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small. 2006;2:1412–7.

    Article  PubMed  CAS  Google Scholar 

  91. Cho NH, Cheong TC, Min JH, Wu JH, Lee SJ, Kim D, et al. A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol. 2011;6:675–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Korea Ministry of Knowledge Economy under KORUS Tech Program (KT-2008-NTAPFS0-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangyong Jon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, M.K., Park, J. & Jon, S. Magnetic nanoparticles and their applications in image-guided drug delivery. Drug Deliv. and Transl. Res. 2, 3–21 (2012). https://doi.org/10.1007/s13346-011-0049-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-011-0049-8

Keywords

Navigation