Skip to main content

Magnetic Nanoparticles for Image-Guided Drug Delivery

  • Chapter
  • First Online:
Magnetic Nanoparticles

Abstract

Owing to the advances in nanotechnology, magnetic iron oxide nanoparticle has been emerged as a promising theranostic agent due to their intrinsic diagnostic capabilities for various biomedical applications like imaging (specifically, magnetic resonance imaging/MRI) techniques, Magnetic Targeted Carrier (MTC) drug technology, hyperthermia properties, and novel therapeutics. Extensive and significant pre-clinical and clinical investigations have explored various characteristics of magnetic iron oxide nanoparticle which includes surface modification via conjugation with targeting components to provide multimodal functionalities. These important and valuable characteristics can be applied to image-guided drug delivery especially magnetic resonance-based drug delivery. MRI-based guided drug delivery provide guidance and monitor drug delivery at target site as well as ability to evaluate therapeutic response in real time. This review summarizes physiochemical properties and pharmacokinetics of magnetic iron oxide nanoparticle as well as an attempt to provide an overview of hierarchical advances describing theranostic system which includes approaches and strategies utilized by magnetic iron oxide nanoparticle-based nanoplatform as well as enhancement in the application of image-guided drug delivery technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn TB, Jeon BS (2015) The role of quercetin on the survival of neuron-like PC12 cells and the expression of α-synuclein. Neural regeneration research. 10(7):1113

    Article  CAS  Google Scholar 

  2. Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Luebbe AS (2000) Locoregional cancer treatment with magnetic drug targeting. Can Res 60(23):6641–6648

    CAS  Google Scholar 

  3. Alvarez-Berríos MP, Castillo A, Rinaldi C, Torres-Lugo M (2014) Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines. Int J Nanomed 9:145–153

    Google Scholar 

  4. Amanzadeh E, Esmaeili A, Abadi RE, Kazemipour N, Pahlevanneshan Z, Beheshti S (2019) Quercetin conjugated with superparamagnetic iron oxide nanoparticles improves learning and memory better than free quercetin via interacting with proteins involved in LTP. Sci Rep 9(1):6876

    Article  CAS  Google Scholar 

  5. Amirsaadat S, Pilehvar-Soltanahmadi Y, Zarghami F, Alipour S, Ebrahimnezhad Z, Zarghami N (2017) Silibinin-loaded magnetic nanoparticles inhibit hTERT gene expression and proliferation of lung cancer cells. Artif Cells Nanomed Biotechnol 45(8):1649–1656

    Article  CAS  Google Scholar 

  6. Ao L, Wu C, Liu K, Wang W, Fang L, Huang L, Su W (2018) Polydopamine-derivated hierarchical nanoplatforms for efficient dual-modal imaging-guided combination in vivo cancer therapy. ACS Appl Mater Interfaces 10(15):12544–12552

    Article  CAS  Google Scholar 

  7. Arends TJ, Nativ O, Maffezzini M, De Cobelli O, Canepa G, Verweij F, Moskovitz B, van der Heijden AG, Witjes JA (2016) Results of a randomised controlled trial comparing intravesical chemohyperthermia with mitomycin C versus bacillus Calmette-Guérin for adjuvant treatment of patients with intermediate-and high-risk non–muscle-invasive bladder cancer. Eur Urol 69(6):1046–1052

    Article  CAS  Google Scholar 

  8. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2(3):22–32

    Article  Google Scholar 

  9. Balivada S, Rachakatla RS, Wang H, Samarakoon TN, Dani RK, Pyle M, Kroh FO, Walker B, Leaym X, Koper OB, Tamura M (2010) A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer 10(1):119(1–9)

    Google Scholar 

  10. Bellova A, Bystrenova E, Koneracka M, Kopcansky P, Valle F, Tomasovicova N, Timko M, Bagelova J, Biscarini F, Gazova Z (2010) Effect of Fe3O4 magnetic nanoparticles on lysozyme amyloid aggregation. Nanotechnology 21(6):

    Article  CAS  Google Scholar 

  11. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99(9):2293–2352

    Article  CAS  Google Scholar 

  12. Chang E, Thekkek N, Yu WW, Colvin VL, Drezek R (2006) Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2(12):1412–1417

    Article  CAS  Google Scholar 

  13. Chang D, Lim M, Goos JA, Qiao R, Ng YY, Mansfeld FM, Jackson M, Davis TP, Kavallaris M (2018) Biologically targeted magnetic hyperthermia: potential and limitations. Front Pharmacol 9

    Google Scholar 

  14. Chaudhary A, Dwivedi C, Gupta A, Nandi CK (2015) One pot synthesis of doxorubicin loaded gold nanoparticles for sustained drug release. RSC Adv 5(118):97330–97334

    Article  CAS  Google Scholar 

  15. Cheon J, Lee JH (2008) Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res 41(12):1630–1640

    Article  CAS  Google Scholar 

  16. Cho HY, Lee T, Yoon J, Han Z, Rabie H, Lee KB, Su WW, Choi JW (2018) Magnetic oleosome as a functional lipophilic drug carrier for cancer therapy. ACS Appl Mater Interfaces 10(11):9301–9309

    Article  CAS  Google Scholar 

  17. Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P (1996) Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 13(3):245–255

    Article  CAS  Google Scholar 

  18. Colombo R, Da Pozzo LF, Salonia A, Rigatti P, Leib Z, Baniel J, Caldarera E, Pavone-Macaluso M (2003) Multicentric study comparing intravesical chemotherapy alone and with local microwave hyperthermia for prophylaxis of recurrence of superficial transitional cell carcinoma. J Clin Oncol 21(23):4270–4276

    Article  Google Scholar 

  19. Colombo R, Salonia A, Leib Z, Pavone-Macaluso M, Engelstein D (2011) Long-term outcomes of a randomized controlled trial comparing thermochemotherapy with mitomycin-C alone as adjuvant treatment for non-muscle-invasive bladder cancer (NMIBC). BJU Int 107(6):912–918

    Article  CAS  Google Scholar 

  20. Corot C, Robert P, Idée JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58(14):1471–1504

    Article  CAS  Google Scholar 

  21. Deger S, Taymoorian K, Boehmer D, Schink T, Roigas J, Wille AH, Budach V, Wernecke KD, Loening SA (2004) Thermoradiotherapy using interstitial self-regulating thermoseeds: an intermediate analysis of a phase II trial. Eur Urol 45(5):574–580

    Article  Google Scholar 

  22. Ding Z, Liu P, Hu D, Sheng Z, Yi H, Gao G, Wu Y, Zhang P, Ling S, Cai L (2017) Redox-responsive dextran based theranostic nanoparticles for near-infrared/magnetic resonance imaging and magnetically targeted photodynamic therapy. Biomater Sci 5:762–771

    Article  CAS  Google Scholar 

  23. Dobson J (2006) Magnetic nanoparticles for drug delivery. Drug Dev Res 67(1):55–60

    Article  CAS  Google Scholar 

  24. Du S, Li J, Du C, Huang Z, Chen G, Yan W (2017) Overendocytosis of superparamagnetic iron oxide particles increases apoptosis and triggers autophagic cell death in human osteosarcoma cell under a spinning magnetic field. Oncotarget 8(6):9410

    Article  Google Scholar 

  25. Estelrich J, Sánchez-Martín MJ, Busquets MA (2015) Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomed 10:1727–1741

    CAS  Google Scholar 

  26. Farajzadeh R, Pilehvar-Soltanahmadi Y, Dadashpour M, Javidfar S, Lotfi-Attari J, Sadeghzadeh H, Shafiei-Irannejad V, Zarghami N (2018) Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. Artif Cells Nanomed Biotechnol 46(5):917–925

    Article  CAS  Google Scholar 

  27. Filippousi M, Angelakeris M, Katsikini M, Paloura E, Efthimiopoulos I, Wang Y, Zamboulis D, Van Tendeloo G (2014) Surfactant effects on the structural and magnetic properties of iron oxide nanoparticles. J Phys Chem C 118(29):16209–16217

    Article  CAS  Google Scholar 

  28. Fortin JP, Wilhelm C, Servais J, Ménager C, Bacri JC, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129(9):2628–2635

    Article  CAS  Google Scholar 

  29. Ge R, Li X, Lin M, Wang D, Li S, Liu S, Tang Q, Liu Y, Jiang J, Liu L, Sun H (2016) Fe3O4@ polydopamine composite theranostic superparticles employing preassembled Fe3O4 nanoparticles as the core. ACS Appl Mater Interfaces 8(35):22942–22952

    Article  CAS  Google Scholar 

  30. Grillo R, Gallo J, Stroppa DG, Carbó-Argibay E, Lima R, Fraceto LF, Bañobre-López M (2016) Sub-micrometer magnetic nanocomposites: insights into the effect of magnetic nanoparticles interactions on the optimization of SAR and MRI performance. ACS Appl Mater Interfaces 8(39):25777–25787

    Google Scholar 

  31. Harima Y, Nagata K, Harima K, Ostapenko VV, Tanaka Y, Sawada S (2001) A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma. Int J Hyperth 17(2):97–105

    Article  CAS  Google Scholar 

  32. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499

    Article  Google Scholar 

  33. He C, Jiang S, Jin H, Chen S, Lin G, Yao H, Wang X, Mi P, Ji Z, Lin Y, Lin Z (2016) Mitochondrial electron transport chain identified as a novel molecular target of SPIO nanoparticles mediated cancer-specific cytotoxicity. Biomaterials 83:102–114

    Article  CAS  Google Scholar 

  34. Hergt R, Dutz S (2007) Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J Magn Magn Mater 311(1):187–192

    Article  CAS  Google Scholar 

  35. Hergt R, Dutz S, Müller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys: Condens Matter 18(38):S2919

    CAS  Google Scholar 

  36. Hua Y, Ma S, Fu Z, Hu Q, Wang LE, Piao Y (2011) Intracavity hyperthermia in nasopharyngeal cancer: a phase III clinical study. Int J Hyperth 27(2):180–186

    Article  Google Scholar 

  37. Huang J, Li Y, Orza A, Lu Q, Guo P, Wang L, Yang L, Mao H (2016) Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches. Adv Func Mater 26(22):3818–3836

    Article  CAS  Google Scholar 

  38. Huang Y, Mao K, Zhang B, Zhao Y (2017) Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Mater Sci Eng, C 70:763–771

    Article  CAS  Google Scholar 

  39. Huang YF, Wang YF, Yan XP (2010) Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environ Sci Technol 44(20):7908–7913

    Article  CAS  Google Scholar 

  40. Huilgol NG, Gupta S, Sridhar CR (2010) Hyperthermia with radiation in the treatment of locally advanced head and neck cancer: a report of randomized trial. J Cancer Res Ther 6(4):492

    Article  Google Scholar 

  41. Häfeli U, Schütt W, Teller J, Zborowski M (eds) (2013) Scientific and clinical applications of magnetic carriers. Springer Science & Business Media, Nov 11 2013

    Google Scholar 

  42. IARC (1993) Monographs on the evaluation of carcinogenic risks to humans. International Agency for Research on Cancer. Available online https://monographs.iarc.fr/wp-content/uploads/2018/06/mono56.pdf. Accessed 20 July 2018

  43. Inomistova M, Khranovska N, Skachkova O, Makeenko O, Orel V (2017) 72P approach based on magnetic nanocomplexes improves antitumor efficacy of dendritic cells immunotherapy in mice. Ann Oncol 28(suppl_5)

    Google Scholar 

  44. Issels RD, Abdel-Rahman S, Wendtner CM, Falk MH, Kurze V, Sauer H, Aydemir U, Hiddemann W (2001) Neoadjuvant chemotherapy combined with regional hyperthermia (RHT) for locally advanced primary or recurrent high-risk adult soft-tissue sarcomas (STS) of adults: long-term results of a phase II study. Eur J Cancer 37(13):1599–1608

    Article  CAS  Google Scholar 

  45. Issels RD, Lindner LH, Verweij J, Wust P, Reichardt P, Schem BC, Abdel-Rahman S, Daugaard S, Salat C, Wendtner CM, Vujaskovic Z (2010) Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol 11(6):561–570

    Article  CAS  Google Scholar 

  46. Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldöfner N, Scholz R, Deger S, Wust P, Loening SA, Jordan A (2005) Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperth 21(7):637–647

    Article  CAS  Google Scholar 

  47. Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldöfner N, Scholz R, Jung K, Jordan A, Wust P, Loening SA (2007) Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperth 23(3):315–323

    Article  CAS  Google Scholar 

  48. Jones EL, Oleson JR, Prosnitz LR, Samulski TV, Vujaskovic Z, Yu D, Sanders LL, Dewhirst MW (2005) Randomized trial of hyperthermia and radiation for superficial tumors. J Clin Oncol 23(13):3079–3085

    Article  Google Scholar 

  49. Jordan A, Scholz R, Maier-Hauff K, van Landeghem FK, Waldoefner N, Teichgraeber U, Pinkernelle J, Bruhn H, Neumann F, Thiesen B, von Deimling A (2006) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 78(1):7–14

    Article  CAS  Google Scholar 

  50. Jun YW, Lee JH, Cheon J (2008) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed 47(28):5122–5135

    Article  CAS  Google Scholar 

  51. Kakar S, Batra D, Singh R, Nautiyal U (2013) Magnetic microspheres as magical novel drug delivery system: a review. J Acute Dis 2(1):1–2

    Article  Google Scholar 

  52. Kallumadil M, Tada M, Nakagawa T, Abe M, Southern P, Pankhurst QA (2009) Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater 321(10):1509–1513

    Article  CAS  Google Scholar 

  53. Kang YS, Risbud S, Rabolt JF, Stroeve P (1996) Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem Mater 8(9):2209–2211

    Article  CAS  Google Scholar 

  54. Kaye AH, Morstyn G, Brownbill D (1987) Adjuvant high-dose photoradiation therapy in the treatment of cerebral glioma: a phase 1–2 study. J Neurosurg 67(4):500–505

    Article  CAS  Google Scholar 

  55. Kell AJ, Stewart G, Ryan S, Peytavi R, Boissinot M, Huletsky A, Bergeron MG, Simard B (2008) Vancomycin-modified nanoparticles for efficient targeting and preconcentration of gram-positive and gram-negative bacteria. ACS Nano 2(9):1777–1788

    Article  CAS  Google Scholar 

  56. Khalafalla S, Reimers G (1980) Preparation of dilution-stable aqueous magnetic fluids. IEEE Trans Magn 16(2):178–183

    Article  Google Scholar 

  57. Kheirkhah P, Denyer S, Bhimani AD, Arnone GD, Esfahani DR, Aguilar T, Zakrzewski J, Venugopal I, Habib N, Gallia GL, Linninger A (2018) Magnetic drug targeting: a novel treatment for intramedullary spinal cord tumors. Sci Rep 8(1):11417

    Article  CAS  Google Scholar 

  58. Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46(7):2523–2558

    Article  CAS  Google Scholar 

  59. Lam T, Pouliot P, Avti PK, Lesage F, Kakkar AK (2013) Superparamagnetic iron oxide based nanoprobes for imaging and theranostics. Adv Coll Interface Sci 199:95–113

    Article  CAS  Google Scholar 

  60. Lee JH, Jang JT, Choi JS, Moon SH, Noh SH, Kim JW, Kim JG, Kim IS, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6(7):418

    Article  CAS  Google Scholar 

  61. Lee DE, Kim AY, Yoon HY, Choi KY, Kwon IC, Jeong SY, Park JH, Kim K (2012) Amphiphilic hyaluronic acid-based nanoparticles for tumor-specific optical/MR dual imaging. J Mater Chem 22(21):10444–10447

    Article  CAS  Google Scholar 

  62. Lin LS, Cong ZX, Cao JB, Ke KM, Peng QL, Gao J, Yang HH, Liu G, Chen X (2014) Multifunctional Fe3O4@polydopamine core–shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 8(4):3876–3883

    Article  CAS  Google Scholar 

  63. Liu X, Du C, Li H, Jiang T, Luo Z, Pang Z, Geng D, Zhang J (2019) Engineered superparamagnetic iron oxide nanoparticles (SPIONs) for dual-modality imaging of intracranial glioblastoma via EGFRvIII targeting. Beilstein J Nanotechnol 10(1):1860–1872

    Article  CAS  Google Scholar 

  64. Liu H, Zhang J, Chen X, Du XS, Zhang JL, Liu G, Zhang WG (2016) Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside. Nanoscale 8(15):7808–7826

    Article  CAS  Google Scholar 

  65. Lombardo D, Kiselev MA, Caccamo MT (2019) Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 2019

    Google Scholar 

  66. Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dörken B, Herrmann F, Gürtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke AJ, Ohlendorf D, Huhnt W, Huhn D (1996 Oct 15) Clinical experiences with magnetic drug targeting: a phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56(20):4686–93. PMID: 8840985

    Google Scholar 

  67. Lyer S, Singh R, Tietze R, Alexiou C (2015) Magnetic nanoparticles for magnetic drug targeting. Biomed Eng/Biomedizinische Technik 60(5):465–475

    Google Scholar 

  68. Magforce (2018) Annual report 2017: important cornerstones laid for two pillar strategy. Available online http://magforce.de/fileadmin/magforce/5_presse/finanzberichte/Geschaeftsbericht_2017/magforce_gb17_e_s.pdf

  69. Magforce (2013) Available online https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00005476. Accessed 29 May 2018

  70. Maguire PD, Samulski TV, Prosnitz LR, Jones EL, Rosner GL, Powers B, Layfield LW, Brizel DM, Scully SP, Harrelson JM, Dewhirst MW (2001) A phase II trial testing the thermal dose parameter CEM43° T90 as a predictor of response in soft tissue sarcomas treated with pre-operative thermoradiotherapy. Int J Hyperth 17(4):283–290

    Article  CAS  Google Scholar 

  71. Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix R, Jordan A (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 81(1):53–60

    Article  CAS  Google Scholar 

  72. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103(2):317–324

    Article  Google Scholar 

  73. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose SJ, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    Google Scholar 

  74. Min Y, Caster JM, Eblan MJ, Wang AZ (2015) Clinical translation of nanomedicine. Chem Rev 115(19):11147–11190

    Article  CAS  Google Scholar 

  75. Mohammadian F, Abhari A, Dariushnejad H, Zarghami F, Nikanfar A, Pilehvar-Soltanahmadi Y, Zarghami N (2015) Upregulation of Mir-34a in AGS gastric cancer cells by a PLGA-PEG-PLGA chrysin nano formulation. Asian Pac J Cancer Prev 16(18):8259–8263

    Article  Google Scholar 

  76. Mohammadian F, Pilehvar-Soltanahmadi Y, Mofarrah M, Dastani-Habashi M, Zarghami N (2016) Down regulation of miR-18a, miR-21 and miR-221 genes in gastric cancer cell line by chrysin-loaded PLGA-PEG nanoparticles. Artif Cells Nanomed Biotechnol 44(8):1972–1978

    Article  CAS  Google Scholar 

  77. Mohammadian F, Pilehvar-Soltanahmadi Y, Zarghami F, Akbarzadeh A, Zarghami N (2017) Upregulation of miR-9 and Let-7a by nanoencapsulated chrysin in gastric cancer cells. Artif Cells Nanomed Biotechnol 45(6):1201–1206

    Article  CAS  Google Scholar 

  78. Mohammadian F, Abhari A, Dariushnejad H, Nikanfar A, Pilehvar-Soltanahmadi Y, Zarghami N (2016) Effects of chrysin-PLGA-PEG nanoparticles on proliferation and gene expression of miRNAs in gastric cancer cell line. Iran J Cancer Prev 9(4)

    Google Scholar 

  79. Moore TL, Wang F, Chen H, Grimes SW, Anker JN, Alexis F (2014) Polymer-coated radioluminescent nanoparticles for quantitative imaging of drug delivery. Adv Func Mater 24(37):5815–5823

    Article  CAS  Google Scholar 

  80. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14(14):2161–2175

    Article  CAS  Google Scholar 

  81. Moroz P, Jones SK, Winter J, Gray BN (2001) Targeting liver tumors with hyperthermia: ferromagnetic embolization in a rabbit liver tumor model. J Surg Oncol 78(1):22–29

    Article  CAS  Google Scholar 

  82. Mu X, Li J, Yan S, Zhang H, Zhang W, Zhang F, Jiang J (2018) siRNA delivery with stem cell membrane-coated magnetic nanoparticles for imaging-guided photothermal therapy and gene therapy. ACS Biomater Sci Eng 4(11):3895–3905

    Article  CAS  Google Scholar 

  83. Mu X, Zhang F, Kong C, Zhang H, Zhang W, Ge R, Liu Y, Jiang J (2017) EGFR-targeted delivery of DOX-loaded Fe3O4@ polydopamine multifunctional nanocomposites for MRI and antitumor chemo-photothermal therapy. Int J Nanomed 12:2899

    Article  CAS  Google Scholar 

  84. Mu K, Zhang S, Ai T, Jiang J, Yao Y, Jiang L, Zhou Q, Xiang H, Zhu Y, Yang X, Zhu W (2015) Monoclonal antibody–conjugated superparamagnetic iron oxide nanoparticles for imaging of epidermal growth factor receptor–targeted cells and gliomas. Mol Imaging 14(5):7290–2015

    Google Scholar 

  85. Murillo TP, Sandquist C, Jacobs PM, Nesbit G, Manninger S, Neuwelt EA (2005) Imaging brain tumors with ferumoxtran-10, a nanoparticle magnetic resonance contrast agent. Therapy 2(6):871–882

    Article  CAS  Google Scholar 

  86. Naseri N, Ajorlou E, Asghari F, Pilehvar-Soltanahmadi Y (2018) An update on nanoparticle-based contrast agents in medical imaging. Artif Cells Nanomed Biotechnol 46(6):1111–1121

    Article  CAS  Google Scholar 

  87. Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293(1):483–496

    Article  CAS  Google Scholar 

  88. Ni D, Zhang J, Bu W, Zhang C, Yao Z, Xing H, Wang J, Duan F, Liu Y, Fan W, Feng X (2016) PEGylated NaHoF4 nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging. Biomaterials 76:218–225

    Article  CAS  Google Scholar 

  89. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3(12):891

    Article  CAS  Google Scholar 

  90. Park SJ, Kim S, Lee S, Khim ZG, Char K, Hyeon T (2000) Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J Am Chem Soc 122(35):8581–8582

    Article  CAS  Google Scholar 

  91. Park JH, von Maltzahn G, Zhang L, Derfus AM, Simberg D, Harris TJ, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small 5(6):694–700

    Google Scholar 

  92. Pereira C, Pereira AM, Fernandes C, Rocha M, Mendes R, Fernández-García MP, Guedes A, Tavares PB, Grenèche JM, Araújo JP, Freire C (2012) Superparamagnetic MFe2O4 (M=Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24(8):1496–1504

    Google Scholar 

  93. Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9(5):1909–1915

    Article  CAS  Google Scholar 

  94. Pflipsen C, Forge D, Benali S, Gossuin Y (2013) Improved stability and relaxivity of a commercial magnetic ferrofluid. J Phys Chem C 117(40):20919–20926

    Article  CAS  Google Scholar 

  95. Popovici E, Dumitrache F, Morjan I, Alexandrescu R, Ciupina V, Prodan G, Vekas L, Bica D, Marinica O, Vasile E (2007) Iron/iron oxides core–shell nanoparticles by laser pyrolysis: structural characterization and enhanced particle dispersion. Appl Surf Sci 254(4):1048–1052

    Article  CAS  Google Scholar 

  96. Pourmanouchehri Z, Jafarzadeh M, Kakaei S, Khameneh ES (2018) Magnetic nanocarrier containing 68Ga–DTPA complex for targeted delivery of doxorubicin. J Inorg Organomet Polym Mater 28(5):1980–1990

    Article  CAS  Google Scholar 

  97. Price PM, Mahmoud WE, Al-Ghamdi AA, Bronstein LM (2018) Magnetic drug delivery: where the field is going. Front Chem 6(1–7):619

    Google Scholar 

  98. Rajpure KY (2015) Exploring structural and magnetic properties of nanocrystalline iron oxide synthesized by autocombustion method. Superlattices Microstruct 77:181–195

    Article  CAS  Google Scholar 

  99. Reddy GR, Bhojani MS, McConville P, Moody J, Moffat BA, Hall DE, Kim G, Koo YE, Woolliscroft MJ, Sugai JV, Johnson TD (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 12(22):6677–6686

    Article  CAS  Google Scholar 

  100. Reimer P, Jähnke N, Fiebich M, Schima W, Deckers F, Marx C, Holzknecht N, Saini S (2000) Hepatic lesion detection and characterization: value of nonenhanced MR imaging, superparamagnetic iron oxide-enhanced MR imaging, and spiral CT—ROC analysis. Radiology 217(1):152–158

    Google Scholar 

  101. Ricci M, Miola M, Multari C, Borroni E, Canuto RA, Congiusta N, Vernè E, Follenzi A, Muzio G (2018) PPARs are mediators of anti-cancer properties of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with conjugated linoleic acid. Chem Biol Interact 292:9–14

    Article  CAS  Google Scholar 

  102. Rivera-Rodriguez A, Chiu-Lam A, Morozov VM, Ishov AM, Rinaldi C (2018) Magnetic nanoparticle hyperthermia potentiates paclitaxel activity in sensitive and resistant breast cancer cells. Int J Nanomed 13:4771–4779

    Article  CAS  Google Scholar 

  103. Rosen JE, Yoffe S, Meerasa A, Verma M, Gu FX (2011) Nanotechnology and diagnostic imaging: new advances in contrast agent technology. J Nanomed Nanotechnol 2(5):115–126

    Article  CAS  Google Scholar 

  104. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374

    Article  CAS  Google Scholar 

  105. Roth Y, Tichler T, Kostenich G, Ruiz-Cabello J, Maier SE, Cohen JS, Orenstein A, Mardor Y (2004) High-b-value diffusion-weighted MR imaging for pretreatment prediction and early monitoring of tumor response to therapy in mice. Radiology 232(3):685–692

    Article  Google Scholar 

  106. Sabado RL, Bhardwaj N (2015) Cancer immunotherapy: dendritic-cell vaccines on the move. Nature 519(7543):300

    Article  CAS  Google Scholar 

  107. Sadeghzadeh H, Pilehvar-Soltanahmadi Y, Akbarzadeh A, Dariushnejad H, Sanjarian F, Zarghami N (2017) The effects of nanoencapsulated curcumin-Fe3O4 on proliferation and hTERT gene expression in lung cancer cells. Anti-Cancer Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 17(10):1363–1373

    Google Scholar 

  108. Saiyed ZM, Gandhi NH, Nair MP (2010) Magnetic nanoformulation of azidothymidine 5’-triphosphate for targeted delivery across the blood–brain barrier. Int J Nanomed 5:157–166

    CAS  Google Scholar 

  109. Salunkhe AB, Khot VM, Pawar SH (2014) Magnetic hyperthermia with magnetic nanoparticles: a status review. Curr Top Med Chem 14(5):572–594

    Article  CAS  Google Scholar 

  110. Santra S, Jativa SD, Kaittanis C, Normand G, Grimm J, Perez JM (2012) Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent. ACS Nano 6(8):7281–7294

    Article  CAS  Google Scholar 

  111. Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17(10):2900–2906

    Article  CAS  Google Scholar 

  112. Sarmah D, Saraf J, Kaur H, Pravalika K, Tekade RK, Borah A, Kalia K, Dave KR, Bhattacharya P (2017) Stroke management: an emerging role of nanotechnology. Micromachines 8(9):262(1–13)

    Google Scholar 

  113. Schmitz S, Coupland S, Gust R, Winterhalter S, Wagner S, Kresse M, Semmler W, Wolf KJ (2000) Superparamagnetic iron oxide–enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol 35(8):460–471

    Google Scholar 

  114. Schneider MG, Lassalle VL (2017) Magnetic iron oxide nanoparticles as novel and efficient tools for atherosclerosis diagnosis. Biomed Pharmacother 93:1098–1115

    Article  CAS  Google Scholar 

  115. Shan L (2012) Lactoferrin-conjugated superparamagnetic iron oxide nanoparticles. In: Molecular imaging and contrast agent database (MICAD) [Internet] Oct 24, 2012. National Center for Biotechnology Information (US)

    Google Scholar 

  116. Shevtsov MA, Nikolaev BP, Yakovleva LY, Marchenko YY, Dobrodumov AV, Mikhrina AL, Martynova MG, Bystrova OA, Yakovenko IV, Ischenko AM (2014) Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION–EGF) for targeting brain tumors. Int J Nanomed 9:273–287

    Article  Google Scholar 

  117. Shokrollahi H (2013) Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids. Mater Sci Eng, C 33(5):2476–2487

    Article  CAS  Google Scholar 

  118. Stephen ZR, Kievit FM, Zhang M (2011) Magnetic nanoparticles for medical MR imaging. Mater Today 14:330–338

    Article  CAS  Google Scholar 

  119. Stylli SS, Howes M, MacGregor L, Rajendra P, Kaye AH (2004) Photodynamic therapy of brain tumours: evaluation of porphyrin uptake versus clinical outcome. J Clin Neurosci 11(6):584–596

    Article  CAS  Google Scholar 

  120. Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265

    Article  CAS  Google Scholar 

  121. Szpak A, Fiejdasz S, Prendota W, Strączek T, Kapusta C, Szmyd J, Nowakowska M, Zapotoczny S (2014) T1–T2 dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes. J Nanopart Res 6(11):2678(1–11)

    Google Scholar 

  122. Tandon P, Farahani K (2011) NCI image-guided drug delivery summit. 314–317

    Google Scholar 

  123. Thomsen LB, Thomsen MS, Moos T (2015) Targeted drug delivery to the brain using magnetic nanoparticles. Therapeutic Delivery 6(10):1145–1155

    Article  CAS  Google Scholar 

  124. Thorek DL, Chen AK, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34(1):23–38

    Article  Google Scholar 

  125. Tsai MF, Hsu C, Yeh CS, Hsiao YJ, Su CH, Wang LF (2018) Tuning the distance of rattle-shaped IONP@ shell-in-shell nanoparticles for magnetically-targeted photothermal therapy in the second near-infrared window. ACS Appl Mater Interfaces 10(2):1508–1519

    Article  CAS  Google Scholar 

  126. Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116(9):5338–5431

    Article  CAS  Google Scholar 

  127. Ungureanu BS, Teodorescuv CM, Săftoiu A (2016) Magnetic nanoparticles for hepatocellular carcinoma diagnosis and therapy. J Gastrointest Liver Dis 25(3)

    Google Scholar 

  128. Unterweger H, Subatzus D, Tietze R, Janko C, Poettler M, Stiegelschmitt A, Schuster M, Maake C, Boccaccini AR, Alexiou C (2015) Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic therapy. Int J Nanomed 10:6985

    Article  CAS  Google Scholar 

  129. Van Den Ancker W, van Luijn MM, Westers TM, Bontkes HJ, Ruben JM, de Gruijl TD, Ossenkoppele GJ, van de Loosdrecht AA (2010) Recent advances in antigen-loaded dendritic cell-based strategies for treatment of minimal residual disease in acute myeloid leukemia. Immunotherapy 2(1):69–83

    Article  CAS  Google Scholar 

  130. Van der Heijden AG, Kiemeney LA, Gofrit ON, Nativ O, Sidi A, Leib Z, Colombo R, Naspro R, Pavone M, Baniel J, Hasner F (2004) Preliminary European results of local microwave hyperthermia and chemotherapy treatment in intermediate or high risk superficial transitional cell carcinoma of the bladder. Eur Urol 46(1):65–72

    Article  Google Scholar 

  131. Vonarbourg A, Passirani C, Saulnier P, Benoit JP (2006) Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27(24):4356–4373

    Article  CAS  Google Scholar 

  132. Wang R, Billone PS, Mullett WM (2013) Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J Nanomater 2013:1

    Article  Google Scholar 

  133. Wang G, Gao S, Tian R, Miller-Kleinhenz J, Qin Z, Liu T, Li L, Zhang F, Ma Q, Zhu L (2018) Theranostic hyaluronic acid-iron micellar nanoparticles for magnetic-field-enhanced in vivo cancer chemotherapy. ChemMedChem 13(1):78–86

    Article  CAS  Google Scholar 

  134. Wang YP, Liao YT, Liu CH, Yu J, Alamri HR, Alothman ZA, Hossain MSA, Yamauchi Y, Wu KCW (2017) Trifunctional Fe3O4/CaP/Alginate core–shell–corona nanoparticles for magnetically guided, pH-responsive, and chemically targeted chemotherapy. ACS Biomater Sci Eng 3(10):2366–2374

    Article  CAS  Google Scholar 

  135. Wang Y, Wei G, Zhang X, Huang X, Zhao J, Guo X, Zhou S (2018) Multistage targeting strategy using magnetic composite nanoparticles for synergism of photothermal therapy and chemotherapy. Small 14(12):1702994

    Article  CAS  Google Scholar 

  136. Wang G, Zhao D, Li N, Wang X, Ma Y (2018) Drug-loaded poly (ε-caprolactone)/Fe3O4 composite microspheres for magnetic resonance imaging and controlled drug delivery. J Magn Magn Mater 456:316–323

    Article  CAS  Google Scholar 

  137. Wei J, Shuai X, Wang R, He X, Li Y, Ding M, Li J, Tan H, Fu Q (2017) Clickable and imageable multiblock polymer micelles with magnetically guided and PEG-switched targeting and release property for precise tumor theranosis. Biomaterials 145:138–153

    Article  CAS  Google Scholar 

  138. Weissleder R, Elizondo G, Stark DD, Hahn PF, Marfil J, Gonzalez JF, Saini S, Todd LE, Ferrucci JT (1989) The diagnosis of splenic lymphoma by MR imaging: value of superparamagnetic iron oxide. Am J Roentgenol 152(1):175–180

    Article  CAS  Google Scholar 

  139. Wessalowski R, Schneider DT, Mils O, Friemann V, Kyrillopoulou O, Schaper J, Matuschek C, Rothe K, Leuschner I, Willers R, Schönberger S (2013) Regional deep hyperthermia for salvage treatment of children and adolescents with refractory or recurrent non-testicular malignant germ-cell tumours: an open-label, non-randomised, single-institution, phase 2 study. Lancet Oncol 14(9):843–852

    Article  Google Scholar 

  140. Winter A, Kowald T, Paulo TS, Goos P, Engels S, Gerullis H, Schiffmann J, Chavan A, Wawroschek F (2018) Magnetic resonance sentinel lymph node imaging and magnetometer-guided intraoperative detection in prostate cancer using superparamagnetic iron oxide nanoparticles. Int J Nanomed 13:6689–6698

    Article  CAS  Google Scholar 

  141. Witjes JA, Hendricksen K, Gofrit O, Risi O, Nativ O (2009) Intravesical hyperthermia and mitomycin-C for carcinoma in situ of the urinary bladder: experience of the European Synergo® working party. World J Urol 27(3):319–324

    Article  CAS  Google Scholar 

  142. Wust P, Gneveckow U, Wust P, Gneveckow U, Johannsen M, Böhmer D, Henkel T, Kahmann F, Sehouli J, Felix R, Ricke J (2006) Magnetic nanoparticles for interstitial thermotherapy–feasibility, tolerance and achieved temperatures. Int J Hyperth 22(8):673–685

    Article  CAS  Google Scholar 

  143. Xu H, Medina-Sánchez M, Magdanz V, Schwarz L, Hebenstreit F, Schmidt OG (2017) Sperm-hybrid micromotor for targeted drug delivery. ACS Nano 12(1):327–337

    Google Scholar 

  144. Yang G, He F, Lv R, Gai S, Cheng Z, Dai Y, Yang P (2015) A cheap and facile route to synthesize monodisperse magnetic nanocrystals and their application as MRI agents. Dalton Trans 44(1):247–253

    Article  CAS  Google Scholar 

  145. Yang G, Zhang B, Wang J, Xie S, Li X (2015) Preparation of polylysine-modified superparamagnetic iron oxide nanoparticles. J Magn Magn Mater 374:205–208

    Article  CAS  Google Scholar 

  146. Yu MK, Park J, Jon S (2012) Magnetic nanoparticles and their applications in image-guided drug delivery. Drug Delivery Transl Res 2(1):3–21

    Article  CAS  Google Scholar 

  147. Zapotoczny S, Szczubialka K, Nowakowska M (2015) Nanoparticles in endothelial theranostics. Pharmacol Rep 67(4):751–755

    Article  CAS  Google Scholar 

  148. Zhang S, Dong D, Sui Y, Liu Z, Wang H, Qian Z, Su W (2006) Preparation of core shell particles consisting of cobalt ferrite and silica by sol–gel process. J Alloy Compd 415(1–2):257–260

    Article  CAS  Google Scholar 

  149. Zhang F, Kong XQ, Li Q, Sun TT, Chai C, Shen W, Hong ZY, He XW, Li WY, Zhang YK (2016) Facile synthesis of CdTe@GdS fluorescent-magnetic nanoparticles for tumor-targeted dual-modal imaging. Talanta 148:108–115

    Article  CAS  Google Scholar 

  150. Zhang E, Kircher MF, Koch M, Eliasson L, Goldberg SN, Renström E (2014) Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation. ACS Nano 8(4):3192–3201

    Google Scholar 

  151. Zheng S, Han J, Jin Z, Kim CS, Park S, Kim KP, Park JO, Choi E (2018) Dual tumor-targeted multifunctional magnetic hyaluronic acid micelles for enhanced MR imaging and combined photothermal-chemotherapy. Colloids Surf, B 164:424–435

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varghese, R., Vijay, N., Dalvi, Y.B. (2021). Magnetic Nanoparticles for Image-Guided Drug Delivery. In: Joshy, K.S., Sabu, T., Thakur, V.K. (eds) Magnetic Nanoparticles. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-1260-2_3

Download citation

Publish with us

Policies and ethics