Skip to main content

Advertisement

Log in

Genetic studies of type 2 diabetes, and microvascular complications of diabetes

  • Mini-Review
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

Genome-wide association studies (GWAS) have significantly advanced the identification of genetic susceptibility variants associated with complex diseases. As of 2023, approximately 800 variants predisposing individuals to the risk of type 2 diabetes (T2D) were identified through GWAS, and the majority of studies were predominantly conducted in European populations. Despite the shared nature of the majority of genetic susceptibility loci across diverse ethnic populations, GWAS in non-European populations, including Japanese and East Asian populations, have revealed population-specific T2D loci. Currently, polygenic risk scores (PRSs), encompassing millions of associated variants, can identify individuals with a higher T2D risk than the general population. However, GWAS focusing on microvascular complications of diabetes have identified a limited number of disease-susceptibility loci. Ongoing efforts are crucial to enhance the applicability of PRS for all ethnic groups and unravel the genetic architecture of microvascular complications of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. IDF Atlas 10th edition: https://diabetesatlas.org/

  2. Poulsen P, Kyvik KO, Vaag A, et al. Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance—a population-based twin study. Diabetologia. 1999;42:139–45.

    Article  CAS  PubMed  Google Scholar 

  3. Groop L, Forsblom C, Lehtovirta M, et al. Metabolic consequences of a family history of NIDDM (the Botnia study): evidence for sex-specific parental effects. Diabetes. 1996;45:1585–93.

    Article  CAS  PubMed  Google Scholar 

  4. Hemminki K, Li X, Sundquist K, et al. Familial risks for type 2 diabetes in Sweden. Diabetes Care. 2010;33:293–7.

    Article  PubMed  Google Scholar 

  5. Almgren P, Lehtovirta M, Isomaa B, et al. Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia study. Diabetologia. 2011;54:2811–9.

    Article  CAS  PubMed  Google Scholar 

  6. Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–5.

    Article  CAS  PubMed  Google Scholar 

  7. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007;39:770–5.

    Article  CAS  PubMed  Google Scholar 

  8. Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6.

    Article  CAS  PubMed  Google Scholar 

  9. Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316:1336–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316:1341–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40:638–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42:579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morris AP, Voight BF, Teslovich TM, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44:981–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scott RA, Scott LJ, Mägi R, et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes. 2017;66:2888–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42:105–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mahajan A, Taliun D, Thurner M, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50:1505–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chan JCN, Malik V, Jia W, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009;301:2129–40.

    Article  CAS  PubMed  Google Scholar 

  18. Huxley R, James WPT, Barzi F, et al. Ethnic comparisons of the cross-sectional relationships between measures of body size with diabetes and hypertension. Obes Rev. 2008;9(Suppl. 1):53–61.

    Article  PubMed  Google Scholar 

  19. Unoki H, Takahashi A, Kawaguchi T, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008;40:1098–102.

    Article  CAS  PubMed  Google Scholar 

  20. Yasuda K, Miyake K, Horikawa Y, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40:1092–7.

    Article  CAS  PubMed  Google Scholar 

  21. Yamauchi T, Hara K, Maeda S, et al. A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat Genet. 2010;42:864–8.

    Article  CAS  PubMed  Google Scholar 

  22. Cho YS, Chen CH, Hu C, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2011;44:67–72.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Imamura M, Maeda S, Yamauchi T, et al. A single-nucleotide polymorphism in ANK1 is associated with susceptibility to type 2 diabetes in Japanese populations. Hum Mol Genet. 2012;21:3042–9.

    Article  CAS  PubMed  Google Scholar 

  24. Hara K, Fujita H, Johnson TA, et al. Genome-wide association study identifies three novel loci for type 2 diabetes. Hum Mol Genet. 2014;23:239–46.

    Article  CAS  PubMed  Google Scholar 

  25. Imamura M, Takahashi A, Yamauchi T, et al. Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes. Nat Commun. 2016;7:10531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suzuki K, Akiyama M, Ishigaki K, et al. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet. 2019;5:379–86.

    Article  Google Scholar 

  27. Spracklen CN, Horikoshi M, Kim YJ, et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature. 2020;582:240–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mahajan A, Go MJ, Zhang W, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46:234–44.

    Article  CAS  PubMed  Google Scholar 

  29. Waters KM, Stram DO, Hassanein MT, et al. Consistent association of type 2 diabetes risk variants found in europeans in diverse racial and ethnic groups. PLoS Genet. 2010;6:e1001078.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Saxena R, Elbers CC, Guo Y, et al. Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci. Am J Hum Genet. 2012;90:410–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vujkovic M, Keaton JM, Lynch JA, et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet. 2020;52:680–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mahajan A, Spracklen CN, Zhang W, et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat Genet. 2022;54:560–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suzuki K, Hatzikotoulas K, Southam L, et al. Genetic drivers of heterogeneity in type 2 diabetes pathophysiology. Nature. 2024;627(8003):347–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sandholm N, Groop PH. Genetic basis of diabetic kidney disease and other diabetic complications. Curr Opin Genet Dev. 2018;50:17–24.

    Article  CAS  PubMed  Google Scholar 

  35. Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020. PMID: 32398868. Review.

  36. Quinn M, Angelico MC, Warram JH, et al. Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia. 1996;39:940–5.

    Article  CAS  PubMed  Google Scholar 

  37. Pettitt DJ, Saad MF, Bennett PH, et al. Familial predisposition to renal disease in two generation of Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1990;33:438–43.

    Article  CAS  PubMed  Google Scholar 

  38. Fava S, Azzopardi J, Hattersley AT, et al. Increased prevalence of proteinuria in diabetic sibs of proteinuric type 2 diabetic subjects. Am J Kidney Dis. 2000;35:708–12.

    Article  CAS  PubMed  Google Scholar 

  39. Monti MC, Lonsdale JT, Montomoli C, et al. Familial risk factors for microvascular complications and differential male-female risk in a large cohort of American families with type 1 diabetes. J Clin Endocrinol Metab. 2007;92:4650–5.

    Article  CAS  PubMed  Google Scholar 

  40. Arar NH, Freedman BI, Adler SG, et al. Heritability of the severity of diabetic retinopathy: the FIND-Eye study. Invest Ophthalmol Vis Sci. 2008;49:3839–45.

    Article  PubMed  Google Scholar 

  41. Hietala K, Forsblom C, Summanen P, et al. Heritability of proliferative diabetic retinopathy. Diabetes. 2008;57:2176–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meng W, Deshmukh HA, van Zuydam NR, et al. A genome-wide association study suggests an association of Chr8p21.3 (GFRA2) with diabetic neuropathic pain. Eur J Pain. 2015;19:392–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krolewski AS, Warram JH, Rand LI, et al. Epidemiologic approach to the etiology of type I diabetes mellitus and its complications. New Engl J Med. 1987;317:1390–8.

    Article  CAS  PubMed  Google Scholar 

  44. Tanaka N, Babazono T, Saito S, et al. Association of solute carrier family 12 (sodium/chloride) member 3 with diabetic nephropathy, identified by genome-wide analyses of single nucleotide polymorphisms. Diabetes. 2003;52:2848–53.

    Article  CAS  PubMed  Google Scholar 

  45. Nishiyama K, Tanaka Y, Nakajima K, et al. Polymorphism of the solute carrier family 12 (sodium/chloride transporters) member 3, SLC12A3, gene at exon 23 (+78G/A: Arg913Gln) is associated with elevation of urinary albumin excretion in Japanese patients with type 2 diabetes: a 10-year longitudinal study. Diabetologia. 2005;48:1335–8.

    Article  CAS  PubMed  Google Scholar 

  46. Shimazaki A, Kawamura Y, Kanazawa A, et al. Genetic variations in the gene encoding ELMO1 are associated with susceptibility to diabetic nephropathy. Diabetes. 2005;54:1171–8.

    Article  CAS  PubMed  Google Scholar 

  47. Kamiyama M, Kobayashi M, Araki S, et al. Polymorphisms in the 3′ UTR in the neurocalcin delta gene affect mRNA stability, and confer susceptibility to diabetic nephropathy. Hum Genet. 2007;122:397–407.

    Article  CAS  PubMed  Google Scholar 

  48. Maeda S, Kobayashi MA, Araki SA, et al. single nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes. PLoS Genet. 2010;6: e1000842.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sandholm N, Salem RM, McKnight AJ, et al. New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet. 2012;8:e1002921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sandholm N, McKnight AJ, Salem RM, et al. Chromosome 2q31. 1 associates with ESRD in women with type 1 diabetes. J Am Soc Nephrol. 2013;24:1537–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Iyengar SK, Sedor JR, Freedman BI, et al. Genome-wide association and trans-ethnic meta-analysis for advanced diabetic kidney disease: family investigation of nephropathy and diabetes (FIND). PLoS Genet. 2015;11:e1005352.

    Article  PubMed  PubMed Central  Google Scholar 

  52. van Zuydam NR, Ahlqvist E, Sandholm N, et al. A genome-wide association study of diabetic kidney disease in subjects with type 2 diabetes. Diabetes. 2018;67:1414–27.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Taira M, Imamura M, Takahashi A, et al. A variant within the FTO confers susceptibility to diabetic nephropathy in Japanese patients with type 2 diabetes. PLoS ONE. 2018;13: e0208654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Loos RJ, Yeo GS. The bigger picture of FTO: the first GWAS-identified obesity gene. Nat Rev Endocrinol. 2014;10:51–61.

    Article  CAS  PubMed  Google Scholar 

  55. Guan M, Keaton JM, Dimitrov L, et al. Genome-wide association study identifies novel loci for type 2 diabetes-attributed end-stage kidney disease in African Americans. Hum Genomics. 2019;13:21.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Salem RM, Todd JN, Sandholm N, et al. Genome-wide association study of diabetic kidney disease highlights biology involved in glomerular basement membrane collagen. J Am Soc Nephrol. 2019;30:2000–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hans-Peter H. Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia. 2018;61:29–38.

    Article  Google Scholar 

  58. Huang YC, Lin JM, Lin HJ, et al. Genome-wide association study of diabetic retinopathy in a Taiwanese population. Ophthalmology. 2010;118:642–8.

    Article  Google Scholar 

  59. Burdon KP, Fogarty RD, Shen W, et al. Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene. Diabetologia. 2015;58:2288–97.

    Article  CAS  PubMed  Google Scholar 

  60. Meng W, Shah KP, Pollack S, et al. A genome-wide association study suggests new evidence for an association of the NADPH Oxidase 4 (NOX4) gene with severe diabetic retinopathy in type 2 diabetes. Acta Ophthalmol. 2018;96:e811–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pollack S, Igo RP Jr, Jensen RA, et al. Multiethnic genome-wide association study of diabetic retinopathy using liability threshold modeling of duration of diabetes and glycemic control. Diabetes. 2018;68:441–56.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Imamura M, Takahashi A, Matsunami M, et al. Genome-wide association studies identify two novel loci conferring susceptibility to diabetic retinopathy in Japanese patients with type 2 diabetes. Hum Mol Genet. 2021;30:716–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stockwell AD, Chang MC, Mahajan A, et al. Multi-ancestry GWAS analysis identifies two novel loci associated with diabetic eye disease and highlights APOL1 as a high risk locus in patients with diabetic macular edema. PLoS Genet. 2023;19: e1010609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tesfaye S, Chaturvedi N, Eaton SE, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med. 2005;352:341–50.

    Article  CAS  PubMed  Google Scholar 

  65. Tang Y, Lenzini PA, Pop-Busui R, et al. A genetic locus on chromosome 2q24 predicting peripheral neuropathy risk in type 2 diabetes: results from the ACCORD and BARI 2D studies. Diabetes. 2019;68:1649–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Florez JC, Jablonski KA, Bayley N, et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med. 2006;355:241–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hivert MF, Jablonski KA, Perreault L, et al. Updated genetic score based on 34 confirmed type 2 diabetes Loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes. 2011;60:1340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Khera AV, Chaffin M, Aragam KG, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50:219–1224.

    Article  Google Scholar 

  69. Chatterjee N, Wheeler B, Sampson J, et al. Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies. Nat Genet. 2013;45:400–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martin AR, Kanai M, Kamatani Y, et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet. 2019;51:584–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Miao J, Guo H, Song G, et al. Quantifying portable genetic effects and improving cross-ancestry genetic prediction with GWAS summary statistics. Nat Commun. 2023;14:832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bocher O, Gilly A, Park YC, et al. Bridging the diversity gap: analytical and study design considerations for improving the accuracy of trans-ancestry genetic prediction. HGG Adv. 2023;4: 100214.

    PubMed  PubMed Central  Google Scholar 

  73. Ruan Y, Lin YF, Feng YA, et al. Improving polygenic prediction in ancestrally diverse populations. Nat Genet. 2022;54:573–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sandhu MS, Weedon MN, Fawcett KA, et al. Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet. 2007;39:951–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gudmundsson J, Sulem P, Steinthorsdottir V, et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet. 2007;39:977–83.

    Article  CAS  PubMed  Google Scholar 

  77. Kooner JS, Saleheen D, Sim X, et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet. 2011;43:984–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Grant from the Okinawa prefecture for promoting collaborative research of innovation and eco system and JSPS KAKENHI Grant Number 23K07992.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minako Imamura.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imamura, M., Maeda, S. Genetic studies of type 2 diabetes, and microvascular complications of diabetes. Diabetol Int (2024). https://doi.org/10.1007/s13340-024-00727-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13340-024-00727-4

Keywords

Navigation