Skip to main content

Advertisement

Log in

An evaluation of nucleic acid-based molecular methods for the detection of plant viruses: a systematic review

  • Review Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

Precise and timely diagnosis of plant viruses is a prerequisite for the implementation of efficient management strategies, considering factors like globalization of trade and climate change facilitating the spread of viruses that lead to agriculture yield losses of billions yearly worldwide. Symptomatic diagnosis alone may not be reliable due to the diverse symptoms and confusion with plant abiotic stresses. It is crucial to detect plant viruses accurately and reliably and do so with little time. A complete understanding of the various detection methods is necessary to achieve this. Enzyme-linked immunosorbent assay (ELISA), has become more popular as a method for detecting viruses but faces limitations such as antibody availability, cost, sample volume, and time. Advanced techniques like polymerase chain reaction (PCR) have surpassed ELISA with its various sensitive variants. Over the last decade, nucleic acid-based molecular methods have gained popularity and have quickly replaced other techniques, such as serological techniques for detecting plant viruses due to their specificity and accuracy. Hence, this review enables the reader to understand the strengths and weaknesses of each molecular technique starting with PCR and its variations, along with various isothermal amplification followed by DNA microarrays, and next-generation sequencing (NGS). As a result of the development of new technologies, NGS is becoming more and more accessible and cheaper, and it looks possible that this approach will replace others as a favoured approach for carrying out regular diagnosis. NGS is also becoming the method of choice for identifying novel viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Abdullahi I, Gryshan Y, Rott M. Amplification-free detection of grapevine viruses using an oligonucleotide microarray. J Virol Methods. 2011;178:1–15.

    Article  CAS  PubMed  Google Scholar 

  2. Adams IP, Glover RH, Monger WA, Mumford R, Jackeviciene E, Navalinskiene M, et al. Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol Plant Pathol. 2009;10:537–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adkar-Purushothama CR, Maheshwar PK, Sano T, Janardhana GR. A sensitive and reliable RT-nested PCR assay for detection of citrus tristeza virus from naturally infected Citrus plants. Curr Microbiol. 2011;62:1455–9.

    Article  CAS  PubMed  Google Scholar 

  4. Al Rwahnih M, Daubert S, Golino D, Rowhani A. Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology. 2009;387:395–401.

    Article  CAS  PubMed  Google Scholar 

  5. Alekseyev YO, Fazeli R, Yang S, Basran R, Maher T, Miller NS, et al. A next-generation sequencing primer—how does it work and what can it do? Acad Pathol. 2018;5:1–11.

    Article  Google Scholar 

  6. Alemu K. Real-time PCR and its application in plant disease diagnostics. Adv Life Sci Technol. 2014;27:39–49.

    Google Scholar 

  7. Ali MM, Li F, Zhang Z, Zhang K, Kang DK, Ankrum JA, et al. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev. 2014;43:3324–41.

    Article  CAS  PubMed  Google Scholar 

  8. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol. 2004;19:535–44.

    Article  PubMed  Google Scholar 

  9. Babu B, Ochoa-Corona FM, Paret ML. Recombinase polymerase amplification applied to plant virus detection and potential implications. Anal Biochem. 2018;546:72–7.

    Article  CAS  PubMed  Google Scholar 

  10. Bachman J. Reverse-transcription PCR (RT-PCR). In: Methods in enzymology. 1st ed. Elsevier Inc.; 2013.

  11. Baráth D, Jaksa-Czotter N, Molnár J, Varga T, Balássy J, Szabó LK, et al. Small RNA NGS revealed the presence of cherry virus A and little cherry virus 1 on apricots in hungary. Viruses. 2018;10:1–12.

    Article  Google Scholar 

  12. Barba M, Czosnek H, Hadidi A. Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses. 2014;6:106–36.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Barzon L, Lavezzo E, Costanzi G, Franchin E, Toppo S, Palù G. Next-generation sequencing technologies in diagnostic virology. J Clin Virol. 2013;58:346–50.

    Article  CAS  PubMed  Google Scholar 

  14. Bertolini E, Olmos A, López MM, Cambra M. Multiplex nested reverse transcription-polymerase chain reaction in a single tube for sensitive and simultaneous detection of four RNA viruses and Pseudomonas savastanoi pv. savastanoi in olive trees. Phytopathology. 2003;93:286–92.

    Article  CAS  PubMed  Google Scholar 

  15. Bertolini E, Olmos A, Martínez MC, Gorris MT, Cambra M. Single-step multiplex RT-PCR for simultaneous and colourimetric detection of six RNA viruses in olive trees. J Virol Methods. 2001;96:33–41.

    Article  CAS  PubMed  Google Scholar 

  16. Bertolini E, Torres E, Olmos A, Martín MP, Bertaccini A, Cambra M. Co-operational PCR coupled with dot blot hybridization for detection and 16SrX grouping of phytoplasmas. Plant Pathol. 2007;56:677–82.

    Article  CAS  Google Scholar 

  17. Bhat AI, Jain RK, Ramiah M. Detection of Tobacco streak virus from sunflower and other crops by reverse transcription polymerase chain reaction. Indian Phytopath. 2002;55:216–8.

    CAS  Google Scholar 

  18. Bhat AI, Rao GP. Characterization of plant viruses methods and protocols. 1st ed. New York: Humana; 2020.

    Book  Google Scholar 

  19. Blanco L, Bernad A, Lázaro JM, Martín G, Garmendia C, Salas M. Highly efficient DNA synthesis by the phage ϕ 29 DNA polymerase. J Biol Chem. 1989;264:8935–40.

    Article  CAS  PubMed  Google Scholar 

  20. Blawid R, Silva JMF, Nagata T. Discovering and sequencing new plant viral genomes by next-generation sequencing: description of a practical pipeline. Ann Appl Biol. 2017;170:301–14.

    Article  Google Scholar 

  21. Boonham N, Kreuze J, Winter S, van der Vlugt R, Bergervoet J, Tomlinson J, et al. Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res. 2014;186:20–31.

    Article  CAS  PubMed  Google Scholar 

  22. Boonham N, Tomlinson J, Mumford R. Microarrays for rapid identification of plant viruses. Annu Rev Phytopathol. 2008;45:307–28.

    Article  Google Scholar 

  23. Boonham N, Walsh K, Smith P, Madagan K, Graham I, Barker I. Detection of potato viruses using microarray technology: towards a generic method for plant viral disease diagnosis. J Virol Methods. 2003;108:181–7.

    Article  CAS  PubMed  Google Scholar 

  24. Bumgarner R. DNA microarrays: types, applications and their future. Curr Protoc Mol Biol. 2013. p. 1–17.

  25. Cao Y, Yan D, Wu X, Chen Z, Lai Y, Lv L, et al. Rapid and visual detection of milk vetch dwarf virus using recombinase polymerase amplification combined with lateral flow strips. Virol J. 2020;17:1–8.

    Article  CAS  Google Scholar 

  26. Caruso P, Bertolini E, Cambra M, López MM. A new and sensitive co-operational polymerase chain reaction for rapid detection of Ralstonia solanacearum in water. J Microbiol Methods. 2003;55:257–72.

    Article  CAS  PubMed  Google Scholar 

  27. Çevik B, Yardimci N, Çulal-Klllç H. Detection of viruses infecting stone fruits in western Mediterranean region of Turkey. Plant Pathol J. 2011;27:44–52.

    Article  Google Scholar 

  28. Chu PW, Waterhouse PM, Martin RR, Gerlach WL. New approaches to the detection of microbial plant pathogens. Biotechnol Genet Eng Rev. 1989;7:45–112.

    Article  CAS  Google Scholar 

  29. Clark MF, Adams AN. Characteristics of the microplate method of enzyme linked immunosorbent assay for the detection of plant viruses. J Gen Virol. 1977;34:475–83.

    Article  CAS  PubMed  Google Scholar 

  30. Compton J. Nucleic acid sequence-based amplification. Nature. 1991;350:91–2.

    Article  CAS  PubMed  Google Scholar 

  31. Constable FE. A Review of diagnostic technologies to benefit the Australian Nursery Industry. Hort Innov. Sydney, Aust. 2019.

  32. Crosslin JM, Hamlin LL. Standardized RT-PCR conditions for detection and identification of eleven viruses of potato and potato spindle tuber viroid. Am J Potato Res. 2011;88:333–8.

    Article  Google Scholar 

  33. Dean FB, Nelson JR, Giesler TL, Lasken RS. Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 2001;11:1095–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deiman B, Van Aarle P, Sillekens P. Characteristics and applications of nucleic acid sequence-based amplification (NASBA). 2002;20.

  35. Deyong Z, Willingmann P, Heinze C, Adam G, Pfunder M, Frey B, et al. Differentiation of Cucumber mosaic virus isolates by hybridization to oligonucleotides in a microarray format. J Virol Methods. 2005;123:101–8.

    Article  CAS  PubMed  Google Scholar 

  36. Dhama K, Karthik K, Chakraborty S, Tiwari R, Kapoor S, Kumar A, et al. Loop-mediated isothermal amplification of DNA (LAMP): a new diagnostic tool lights the world of diagnosis of animal and human pathogens: a review. Pak J Biol Sci. 2014;17:151–66.

    Article  CAS  PubMed  Google Scholar 

  37. Diaz-Lara A, Stevens K, Klaassen V, Golino D, Al RM. Comprehensive real-time RT-PCR assays for the detection of fifteen viruses infecting Prunus spp. Plants. 2020;9:1–13.

    Article  Google Scholar 

  38. Dodds JA, Morris TJ, Jordan RL. Plant viral double-stranded RNA. Annu Rev Phytopathol. 1984;22:151–68.

    Article  CAS  Google Scholar 

  39. Dovas CI, Katis NI. A spot nested RT-PCR method for the simultaneous detection of members of the Vitivirus and Foveavirus genera in grapevine. J Virol Methods. 2003;107:99–106.

    Article  CAS  PubMed  Google Scholar 

  40. Dukes JP, King DP, Alexandersen S. Novel reverse transcription loop-mediated isothermal amplification for rapid detection of foot-and-mouth disease virus. Arch Virol. 2006;151:1093–106.

    Article  CAS  PubMed  Google Scholar 

  41. Dumschott K, Schmidt MHWW, Chawla HS, Snowdon R, Usadel B. Oxford Nanopore sequencing: new opportunities for plant genomics? J Exp Bot. 2020;71:5313–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Edwards MC, Fetch TG, Schwarz PB, Steffenson BJ. Effect of barley yellow dwarf virus infection on yield and malting quality of barley. Plant Dis. 2001;85:202–7.

    Article  PubMed  Google Scholar 

  43. Edwards MC, Gibbs RA. Multiplex PCR: advantages, development, and applications. Genome Res. 1994;3:S65-75.

    Article  CAS  Google Scholar 

  44. Egan AN, Schlueter J, Spooner DM. Applications of next-generation sequencing in plant biology. Am J Bot. 2012;99:175–85.

    Article  CAS  PubMed  Google Scholar 

  45. Ellis SD, Boehm MJ, Qu F. Viral Diseases of plants. Agric Adm. 2008;1–3.

  46. Elnifro EM, Ashshi AM, Cooper RJ, Klapper PE. Multiplex PCR: optimization and application in diagnostic virology. Clin Microbiol Rev. 2000;13:559–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Engel EA, Escobar PF, Rojas LA, Rivera PA, Fiore N, Valenzuela PDT. A diagnostic oligonucleotide microarray for simultaneous detection of grapevine viruses. J Virol Methods. 2010;163:445–51.

    Article  CAS  PubMed  Google Scholar 

  48. Fajardo TVMM, Silva FN, Eiras M, Nickel O. High-throughput sequencing applied for the identification of viruses infecting grapevines in Brazil and genetic variability analysis. Trop Plant Pathol. 2017;42:250–60.

    Article  Google Scholar 

  49. Fang X, Liu Y, Kong J, Jiang X. Loop-mediated Isothermal amplification integrated on microfluidic chips for point-of-care quantitative. Anal Chem. 2010;82:3002–6.

    Article  CAS  PubMed  Google Scholar 

  50. Fang Y, Ramasamy RP. Current and prospective methods for plant disease detection. Biosensors. 2015;5:537–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fire A, Xu SQ. Rolling replication of short DNA circles. Proc Natl Acad Sci. 1995;92:4641–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fu W-L, Sun S-R, Fu H-Y, Chen R-K, Su J-W, Gao S-J. A one-step real-time RT-PCR Assay for the detection and quantitation of sugarcane streak mosaic virus. Biomed Res Int. 2015;2015:1–9.

    Google Scholar 

  53. Gadkar VJ, Goldfarb DM, Gantt S, Tilley PAGG. Real-time detection and monitoring of loop mediated amplification (LAMP) reaction using self-quenching and de-quenching fluorogenic probes. Sci Rep. 2018;8:2–11. https://doi.org/10.1038/s41598-018-23930-1.

    Article  CAS  Google Scholar 

  54. Gambino G. Multiplex RT-PCR method for the simultaneous detection of nine grapevine viruses. Methods Mol Biol. 2015;1236:39–47.

    Article  CAS  PubMed  Google Scholar 

  55. Garmendia C, Bernad A, Esteban JA, Blanco L, Salas M. The bacteriophage φ29 DNA polymerase, a proofreading enzyme. J Biol Chem. 1992;267:2594–9.

    Article  CAS  PubMed  Google Scholar 

  56. Ghosh DK, Kokane SB, Gowda S. Development of a reverse transcription recombinase polymerase based isothermal amplification coupled with lateral flow immunochromatographic assay (CTV-RT-RPA-LFICA) for rapid detection of Citrus tristeza virus. Sci Rep. 2020;10:1–16. https://doi.org/10.1038/s41598-020-77692-w.

    Article  CAS  Google Scholar 

  57. Ghosh DK, Warghane A, Biswas KK. Rapid and sensitive detection of Citrus tristeza virus using reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay. Methods Mol Biol. 2019;2015:143–50.

    Article  CAS  PubMed  Google Scholar 

  58. Gibson UEM, Heid CA, Williams PM. A novel method for real time quantitative RT-PCR. Genome Res. 1996;6:995–1001.

    Article  CAS  PubMed  Google Scholar 

  59. Gillaspie J, Pio-Ribeiro G, Andrade GP, Pappu HR. RT-PCR detection of seedborne Cowpea aphid-borne mosaic virus in peanut. Plant Dis. 2001;85:1181–2.

    Article  CAS  PubMed  Google Scholar 

  60. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016. https://doi.org/10.1038/nrg.2016.49.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Goulter K, Randles J. Serological and molecular techniques to detect and identify plant pathogens. Plant Pathog Plant Dis. 1997.

  62. Green MR, Sambrook J. Quantification of DNA by real-time polymerase chain reaction (PCR). Cold Spring Harb Protoc. 2018;2018:843–6.

    Google Scholar 

  63. Green MR, Sambrook J. The basic polymerase chain reaction (PCR). Cold Spring Harb Protoc. 2018;2018:338–45.

    Google Scholar 

  64. Green MR, Sambrook J. Nested polymerase chain reaction (PCR). Cold Spring Harb Protoc. 2020;2:175–9.

    Google Scholar 

  65. Gu L, Yan W, Liu L, Wang S, Zhang X, Lyu M. Research progress on rolling circle amplification (RCA)-based biomedical sensing. Pharmaceuticals. 2018;11:1–19.

    Article  Google Scholar 

  66. Hannum S, Aceh RM, Elimasni. Begomovirus detection on diseased chili plant (Capsicum annum L.) in Tanah Karo North-Sumatera with PCR techniques. IOP Conf Ser Earth Environ Sci. 2019;305:012057.

    Article  Google Scholar 

  67. Heather JM, Chain B. The sequence of sequencers: the history of sequencing DNA. Genomics. 2016. https://doi.org/10.1016/j.ygeno.2015.11.003.

    Article  PubMed  Google Scholar 

  68. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996;6:986–94.

    Article  CAS  PubMed  Google Scholar 

  69. Heller MJ. DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng. 2002;4:129–53.

    Article  CAS  PubMed  Google Scholar 

  70. Henegariu O, Heerema NA, Dlouhy SR, Vance GH, Vogt PH. Multiplex PCR: Critical parameters and step-by-step protocol. Biotechniques. 1997;23:504–11.

    Article  CAS  PubMed  Google Scholar 

  71. Hill J, Beriwal S, Chandra I, Paul VK, Kapil A, Singh T, et al. Loop-mediated isothermal amplification assay for rapid detection of common strains of Escherichia coli. J Clin Microbiol. 2008;46:2800–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hill PJ, Stewart GSAB. The polymerase chain reaction in molecular and micro-biology. Biotechnol Genet Eng Rev. 1992;10:343–78.

    Article  CAS  PubMed  Google Scholar 

  73. Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5′ → 3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A. 1991;88:7276–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hull R. Plant virology. 5th ed. London: Academic Press; 2013.

    Google Scholar 

  75. ICTV. Current ICTV Taxonomy Release | ICTV. Int Comm Taxon Viruses. 2023. https://ictv.global/taxonomy.

  76. Inoue-Nagata AK, Albuquerque LC, Rocha WB, Nagata T. A simple method for cloning the complete begomovirus genome using the bacteriophage φ29 DNA polymerase. J Virol Methods. 2004;116:209–11.

    Article  CAS  PubMed  Google Scholar 

  77. Iseki H, Alhassan A, Ohta N, Thekisoe OMM, Yokoyama N, Inoue N, et al. Development of a multiplex loop-mediated isothermal amplification (mLAMP) method for the simultaneous detection of bovine Babesia parasites. J Microbiol Methods. 2007;71:281–7.

    Article  CAS  PubMed  Google Scholar 

  78. Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. Nucleic acid lateral flow assay with recombinase polymerase amplification: solutions for highly sensitive detection of RNA virus. Talanta. 2020;210:120616. https://doi.org/10.1016/j.talanta.2019.120616.

    Article  CAS  PubMed  Google Scholar 

  79. James AP, Geijskes RJ, Dale JL, Harding RM. Development of a novel rolling-circle amplification technique to detect Banana streak virus that also discriminates between integrated and episomal virus sequences. Plant Dis. 2011;95:57–62.

    Article  CAS  PubMed  Google Scholar 

  80. James A, MacDonald J. Recombinase polymerase amplification: emergence as a critical molecular technology for rapid, low-resource diagnostics. Expert Rev Mol Diagn. 2015;15:1475–89.

    Article  CAS  PubMed  Google Scholar 

  81. Jeong J-J, Ju H-J, Noh J. A review of detection methods for the plant viruses. Res Plant Dis. 2014;20:173–81.

    Article  Google Scholar 

  82. Johne R, Müller H, Rector A, van Ranst M, Stevens H. Rolling-circle amplification of viral DNA genomes using phi29 polymerase. Trends Microbiol. 2009;17:205–11.

    Article  CAS  PubMed  Google Scholar 

  83. Jones RAC. Global plant virus disease pandemics and epidemics. Plants. 2021;10:1–41.

    Article  Google Scholar 

  84. Kinoti WM, Constable FE, Nancarrow N, Plummer KM, Rodoni B. Generic amplicon deep sequencing to determine Ilarvirus species diversity in Australian Prunus. Front Microbiol. 2017;8:1219.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S, Barker I, et al. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology. 2009;388:1–7. https://doi.org/10.1016/j.virol.2009.03.024.

    Article  CAS  PubMed  Google Scholar 

  86. Kwak HR, Kim MK, Shin JC, Lee YJ, Seo JK, Lee HU, et al. The current incidence of viral disease in Korean sweet potatoes and development of multiplex RT-PCR assays for simultaneous detection of eight sweet potato viruses. Plant Pathol J. 2014;30:416–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lagunavicius A, Merkiene E, Kiveryte Z, Savaneviciute A, Zimbaite-Ruskuliene V, Radzvilavicius T, et al. Novel application of Phi29 DNA polymerase: RNA detection and analysis in vitro and in situ by target RNA-primed RCA. RNA. 2009;15:765–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee JS, Cho WK, Lee SH, Choi HS, Kim KH. Development of RT-PCR based method for detecting five non-reported quarantine plant viruses infecting the family Cucurbitaceae or Solanaceae. Plant Pathol J. 2011;27:93–7.

    Article  CAS  Google Scholar 

  89. Lee S, Shin YG. Development and practical use of RT-PCR for seed-transmitted Prune dwarf virus in quarantine. Plant Pathol J. 2014;30:178–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB. Virus taxonomy: the database of the international committee on taxonomy of viruses (ICTV). Nucleic Acids Res. 2018;46:D708–17. https://doi.org/10.1093/nar/gkx932.

    Article  CAS  PubMed  Google Scholar 

  91. Leone G, Van Schijndel HB, Van Gemen B, Schoen CD. Direct detection of potato leafroll virus in potato tubers by immunocapture and the isothermal nucleic acid amplification method NASBA. J Virol Methods. 1997;66:19–27.

    Article  CAS  PubMed  Google Scholar 

  92. Li R, Hartung JS. Reverse transcription-polymerase chain reaction-based detection of plant viruses. Curr Protoc Microbiol. 2007;6:1–9.

    Article  Google Scholar 

  93. Li J, Macdonald J, Von Stetten F. Review: a comprehensive summary of a decade development of the recombinase polymerase amplification. Anal R Soc Chem. 2019;144:31–67.

    CAS  Google Scholar 

  94. Livak KJ, Flood SJA, Marmaro J, Giusti W, Deetz K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. Genome Res. 1995;4:357–62.

    Article  CAS  Google Scholar 

  95. Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet. 1998;19:225–32.

    Article  CAS  PubMed  Google Scholar 

  96. Lobato IM, O’Sullivan CK. Recombinase polymerase amplification: basics, applications and recent advances. TrAC - Trends Anal Chem. 2018;98:19–35.

    Article  CAS  Google Scholar 

  97. López MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E. Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr Issues Mol Biol. 2009;11:13–46.

    PubMed  Google Scholar 

  98. López-Fabuel I, Wetzel T, Bertolini E, Bassler A, Vidal E, Torres LB, et al. Real-time multiplex RT-PCR for the simultaneous detection of the five main grapevine viruses. J Virol Methods. 2013;188:21–4. https://doi.org/10.1016/j.jviromet.2012.11.034.

    Article  CAS  PubMed  Google Scholar 

  99. López-Moya JJ, Cubero J, López-Abella D, Díaz-Ruíz JR. Detection of cauliflower mosaic virus (CaMV) in single aphids by the polymerase chain reaction (PCR). J Virol Methods. 1992;37:129–37.

    Article  PubMed  Google Scholar 

  100. Luo W, Pietravalle S, Parnell S, Van den Bosch F, Gottwald TR, Irey MS, et al. An improved regulatory sampling method for mapping and representing plant disease from a limited number of samples. Epidemics. 2012;4:68–77.

    Article  CAS  PubMed  Google Scholar 

  101. Mackay IM, Arden KE, Nitsche A. Real-time PCR in virology. Nucleic Acids Res. 2002;30:1292–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Makkouk K, Kumari S. Molecular diagnosis of plant viruses. Arab J Plant Prot. 2006;24:135–8.

    Google Scholar 

  103. Maliogka VI, Minafra A, Saldarelli P, Ruiz-García AB, Glasa M, Katis N, et al. Recent advances on detection and characterization of fruit tree viruses using high-throughput sequencing technologies. Viruses. 2018;10:1–23.

    Article  Google Scholar 

  104. Mao F, Leung WY, Xin X. Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnol. 2007;7:1–16.

    Article  CAS  Google Scholar 

  105. Marmiroli N, Maestri E. Polymerase chain reaction (PCR). Food Toxic Anal. 2007. https://doi.org/10.1016/B978-044452843-8/50007-9.

    Article  Google Scholar 

  106. Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, et al. Advanced methods of plant disease detection. A review. Agron Sustain Dev. 2015;35:1–25.

    Article  Google Scholar 

  107. Martos S, Torres E, El Bakali MA, Raposo R, Gramaje D, Armengol J, et al. Co-operational PCR coupled with dot blot hybridization for the detection of phaeomoniella chlamydospora on infected grapevine wood. J Phytopathol. 2011;159:247–54.

    Article  CAS  Google Scholar 

  108. Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci. 1977;74:560–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mehetre GT, Leo VV, Singh G, Sorokan A, Maksimov I, Yadav MK, et al. Current developments and challenges in plant viral diagnostics: a systematic review. Viruses. 2021;13:1–31.

    Article  Google Scholar 

  110. Mekuria G, Ramesh SA, Alberts E, Bertozzi T, Wirthensohn M, Collins G, et al. Comparison of ELISA and RT-PCR for the detection of Prunus necrotic ring spot virus and prune dwarf virus in almond (Prunus dulcis). J Virol Methods. 2003;114:65–9.

    Article  CAS  PubMed  Google Scholar 

  111. Menzel W, Jelkmann W, Maiss E. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. J Virol Methods. 2002;99:81–92.

    Article  CAS  PubMed  Google Scholar 

  112. Mori Y, Kitao M, Tomita N, Notomi T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J Biochem Biophys Methods. 2004;59:145–57.

    Article  CAS  PubMed  Google Scholar 

  113. Mori Y, Nagamine K, Tomita N, Notomi T. Detection of Loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun. 2001;289:150–4.

    Article  CAS  PubMed  Google Scholar 

  114. Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. In: Ray Wu, editor. Methods enzymol. London: Academic Press; 1987. p. 335–50.

    Google Scholar 

  115. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51:263–73.

    Article  CAS  PubMed  Google Scholar 

  116. Mumo NN, Mamati GE, Ateka EM, Rimberia FK, Asudi GO, Boykin LM, et al. Metagenomic analysis of plant viruses associated with papaya ringspot disease in Carica papaya L. in Kenya. Front Microbiol. 2020;11:205.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Musembi Mutuku J, Wamonje FO, Mukeshimana G, Njuguna J, Wamalwa M, Choi SK, et al. Metagenomic analysis of plant virus occurrence in common bean (Phaseolus vulgaris) in Central Kenya. Front Microbiol. 2018;9:1–12.

    Google Scholar 

  118. Nemes K, Salánki K. A multiplex RT-PCR assay for the simultaneous detection of prevalent viruses infecting pepper (Capsicum annuum L.). J Virol Methods. 2020;278:113838. https://doi.org/10.1016/j.jviromet.2020.113838.

    Article  CAS  PubMed  Google Scholar 

  119. Njiru ZK, Mikosza ASJ, Armstrong T, Enyaru JC, Ndung’u JM, Thompson ARC. Loop-mediated isothermal amplification (LAMP) method for rapid detection of Trypanosoma brucei rhodesiense. PLoS Negl Trop Dis. 2008;2:e147.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:e63–e63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Olmos A, Bertolini E, Cambra M. Simultaneous and co-operational amplification (Co-PCR): a new concept for detection of plant viruses. J Virol Methods. 2002;106:51–9.

    Article  CAS  PubMed  Google Scholar 

  122. Olmos A, Cambra M, Esteban O, Gorris MT, Terrada E. New device and method for capture, reverse transcription and nested PCR in a single closed-tube. Nucleic Acids Res. 1999;27:1564–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Olmos A, Capote N, Bertolini E, Cambra M. Molecular diagnostic methods for plant viruses. In: Punja ZK, De Boer S, Sanfaçon HI, editors. Biotechnology and plant disease management. Wallingford: CAB International; 2007. p. 227–49.

    Chapter  Google Scholar 

  124. Pallás V, Sánchez-Navarro JA, James D. Recent advances on the multiplex molecular detection of plant viruses and viroids. Front Microbiol. 2018;9:1–11.

    Article  Google Scholar 

  125. Panno S, Ferriol I, Rangel EA, Olmos A, Han CG, Martinelli F, et al. Detection and identification of Fabavirus species by one-step RT-PCR and multiplex RT-PCR. J Virol Methods. 2014;197:77–82. https://doi.org/10.1016/j.jviromet.2013.12.002.

    Article  CAS  PubMed  Google Scholar 

  126. Panno S, Matić S, Tiberini A, Caruso AG, Bella P, Torta L, et al. Loop mediated isothermal amplification: principles and applications in plant virology. Plants. 2020;9:461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Parida MM. Rapid and real-time detection technologies for emerging viruses of biomedical importance. J Biosci. 2008;33:617–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Parida M, Horioke K, Ishida H, Dash PK, Saxena P, Jana AM, et al. Rapid detection and differentiation of dengue virus serotypes by a real-time reverse transcription-loop-mediated isothermal amplification assay. J Clin Microbiol. 2005;43:2895–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Parida MM, Sannarangaiah S, Dash PK, Rao PVL, Morita K. Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev Med Virol. 2008;18:407–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Park KS, Bae YJ, Jung EJ, Kang SJ. RT-PCR-based detection of six garlic viruses and their phylogenetic relationships. J Microbiol Biotechnol. 2005;15:1110–4.

    CAS  Google Scholar 

  131. Pasquini G, Barba M, Hadidi A, Faggioli F, Negri R, Sobol I, et al. Oligonucleotide microarray-based detection and genotyping of Plum pox virus. J Virol Methods. 2008;147:118–26.

    Article  CAS  PubMed  Google Scholar 

  132. Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol. 2006;4:2–8.

    Article  Google Scholar 

  133. Pietersen G, Harris M. Poor detection of grapevine leafroll disease in the rootstock Richter 99 (Vitis berlandieri X Vitis rupestris). In: Fiore N, Carrasco AZ, editors. Proc 19th Congr Int Counc Study Virus Virus-Like Dis Grapevine (ICVG), Santiago, Chile. 2018.

  134. Porta C, Lomonossoff GP. Viruses as vectors for the expression of foreign sequences in plants. Biotechnol Genet Eng Rev. 2002;19:245–92.

    Article  CAS  PubMed  Google Scholar 

  135. Ratcliff RM, Chang G, Kok TW, Sloots TP. Molecular diagnosis of medical viruses. Curr Issues Mol Biol. 2007;9:87–102.

    CAS  PubMed  Google Scholar 

  136. Rio DC. Reverse transcription–polymerase chain reaction. Cold Spring Harb Protoc. 2014;2014:1207–16.

    Article  PubMed  Google Scholar 

  137. Rubio L, Galipienso L, Ferriol I. Detection of plant viruses and disease management: relevance of genetic diversity and evolution. Front Plant Sci. 2020;11:1–23.

    Article  Google Scholar 

  138. Sahoo PR, Sethy K, Mohapatra S, Panda D. Loop mediated isothermal amplification: an innovative gene amplification technique for animal diseases. Vet World. 2016;9:465–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Saik RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science (80-). 1988;239:487–91.

    Article  Google Scholar 

  140. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci. 1977;74:5463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sastry KS, Zitter TA. Ecology and epidemiology of virus and viroid diseases of tropical crops. Plant Virus Viroid Dis. Trop. Vol. 2 Epidemiol. Manag. Springer; 2014.

  142. Scagliusi SM, Basu SK, de Gouvea JA, Vega J. Comparison of two diagnostic methods for evaluation of sugarcane yellow leaf virus concentration in Brazilian sugarcane cultivars. Funct Plant Sci Biotechnol. 2009;3:26–30.

    Google Scholar 

  143. Schaad NW, Frederick RD. Real-time PCR and its application for rapid plant disease diagnostics. Can J Plant Pathol. 2002;24:250–8.

    Article  CAS  Google Scholar 

  144. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science (80-). 1995;270:467–70.

    Article  CAS  Google Scholar 

  145. Schneeberger C, Speiser P, Kury F, Zeulinger R. Quantitative detection of reverse transcriptase-PCR Products by means of a novel and sensitive DNA stain. Genome Res. 1995;4:234–8.

    Article  CAS  Google Scholar 

  146. Shuber AP, Grondin VJ, Klinger KW. A simplified procedure for developing multiplex PCRs. Genome Res. 1995;5:488–93.

    Article  CAS  PubMed  Google Scholar 

  147. Slatko BE, Gardner AF, Ausubel FM. Overview of next generation sequencing technologies. Curr Protoc Mol Biol. 2018;122:e59.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Strange RN, Scott PR. Plant disease: a threat to global food security. Annu Rev Phytopathol. 2005;43:83–116.

    Article  CAS  PubMed  Google Scholar 

  149. Tang MJ, Zhou S, Zhang XY, Pu JH, Ge QL, Tang XJ, et al. Rapid and sensitive detection of Listeria monocytogenes by loop-mediated isothermal amplification. Curr Microbiol. 2011;63:511–6.

    Article  CAS  PubMed  Google Scholar 

  150. Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M. A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines. Methods. 2010;50:S1-5.

    Article  CAS  PubMed  Google Scholar 

  151. Teshale J. Evaluation of molecular and serological diagnostic techniques for a large scale detection of plum pox virus. Res Plant Sci. 2014;2:33–41.

    Google Scholar 

  152. Thomson D, Dietzgen RG. Detection of DNA and RNA plant viruses by PCR and RT-PCR using a rapid virus release protocol without tissue homogenization. J Virol Methods. 1995;54:85–95.

    Article  CAS  PubMed  Google Scholar 

  153. Tiberini A, Tomassoli L, Barba M, Hadidi A. Oligonucleotide microarray-based detection and identification of 10 major tomato viruses. J Virol Methods. 2010;168:133–40. https://doi.org/10.1016/j.jviromet.2010.05.003.

    Article  CAS  PubMed  Google Scholar 

  154. Tomita N, Mori Y, Kanda H, Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc. 2008;3:877–82.

    Article  CAS  PubMed  Google Scholar 

  155. Torrance L, Jones RAC. Recent developments in serological methods suited for use in routine testing for plant viruses. Plant Pathol. 1981;30:1–24.

    Article  Google Scholar 

  156. Tuo D, Shen W, Yang Y, Yan P, Li X, Zhou P. Development and validation of a multiplex reverse transcription PCR assay for simultaneous detection of three papaya viruses. Viruses. 2014;6:3893–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. 1996;14:303–8.

    Article  CAS  PubMed  Google Scholar 

  158. Van Beckhoven JRCM, Stead DE, Van Der Wolf JM. Detection of Clavibacter michiganensis subsp. sepedonicus by AmpliDet RNA, a new technology based on real time monitoring of NASBA amplicons with a molecular beacon. J Appl Microbiol. 2002;93:840–9.

    Article  CAS  PubMed  Google Scholar 

  159. Van Der Want JPH, Dijkstra J. A history of plant virology. Arch Virol. 2006;151:1467–98.

    Article  PubMed  Google Scholar 

  160. van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. The third revolution in sequencing technology. Trends Genet. 2018. https://doi.org/10.1016/j.tig.2018.05.008.

    Article  PubMed  Google Scholar 

  161. Varma A, Singh MK. Diagnosis of plant virus diseases. Appl Plant Virol. 2020. https://doi.org/10.1016/B978-0-12-818654-1.00006-2.

    Article  Google Scholar 

  162. Villamor DEVV, Ho T, Al Rwahnih M, Martin RR, Tzanetakis IE. High throughput sequencing for plant virus detection and discovery. Phytopathology. 2019;109:716–25.

    Article  CAS  PubMed  Google Scholar 

  163. Vunsh RON, Rosner A, Stein A. The use of the polymerase chain reaction (PCR) for the detection of bean yellow mosaic virus in gladiolus. Ann Appl Biol. 1990;117:561–9. https://doi.org/10.1111/j.1744-7348.1990.tb04822.x.

    Article  Google Scholar 

  164. Wainaina JM, Ateka E, Makori T, Kehoe MA, Boykin LM. A metagenomic study of DNA viruses from samples of local varieties of common bean in Kenya. PeerJ. 2019;2019:1–18.

    Google Scholar 

  165. Walker PJ, Siddell SG, Lefkowitz EJ, Mushegian AR, Adriaenssens EM, Alfenas-Zerbini P, et al. Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses. Arch Virol. 2022;167:2429–40. https://doi.org/10.1007/s00705-022-05516-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wamaitha MJ, Nigam D, Maina S, Stomeo F, Wangai A, Njuguna JN, et al. Metagenomic analysis of viruses associated with maize lethal necrosis in Kenya. Virol J. 2018;15:1–19.

    Article  Google Scholar 

  167. Wambulwa MC, Wachira FN, Karanja LS, Muturi SM. Rolling circle amplification is more sensitive than PCR and serology-based methods in detection of banana streak virus in musa germplasm. Am J Plant Sci. 2012;03:1581–7.

    Article  CAS  Google Scholar 

  168. Watzinger F, Ebner K, Lion T. Detection and monitoring of virus infections by real-time PCR. Mol Aspects Med. 2006;27:254–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Webster CG, Wylie SJ, Jones MGKK. Diagnosis of plant viral pathogens. Curr Sci. 2004. p. 1604–7.

  170. Wei T, Pearson MN, Blohm D, Nölte M, Armstrong K. Development of a short oligonucleotide microarray for the detection and identification of multiple potyviruses. J Virol Methods. 2009;162:109–18.

    Article  CAS  PubMed  Google Scholar 

  171. Wilczynski SP. Molecular biology. Mod Surg Pathol. 2009. https://doi.org/10.1016/B978-1-4160-3966-2.00006-0.

    Article  Google Scholar 

  172. Wilhelm J, Pingoud A. Real-time polymerase chain reaction. ChemBioChem. 2003;4:1120–8.

    Article  CAS  PubMed  Google Scholar 

  173. Wu Q, Habili N, Constable F, Al Rwahnih M, Goszczynski DE, Wang Y, et al. Virus pathogens in Australian vineyards with an emphasis on Shiraz disease. Viruses. 2020;12:818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, Nakayama S, et al. Isothermal amplified detection of DNA and RNA. Mol Biosyst. 2014;10:970–1003.

    Article  CAS  PubMed  Google Scholar 

  175. Zhang Y, Yin J, Li G, Li M, Huang X, Chen H, et al. Oligonucleotide microarray with a minimal number of probes for the detection and identification of thirteen genera of plant viruses. J Virol Methods. 2010;167:53–60. https://doi.org/10.1016/j.jviromet.2010.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhao Y, Chen F, Li Q, Wang L, Fan C. Isothermal amplification of nucleic acids. Chem Rev. 2015;115:12491–545.

    Article  CAS  PubMed  Google Scholar 

  177. Zhao L, Li G, Gao Y, Zhu Y, Liu J, Zhu X. Reverse transcription loop-mediated isothermal amplification assay for detecting tomato chlorosis virus. J Virol Methods. 2015;213:93–7.

    Article  CAS  PubMed  Google Scholar 

  178. Zhao X, Liu X, Ge B, Li M, Hong B. A multiplex RT-PCR for simultaneous detection and identification of five viruses and two viroids infecting chrysanthemum. Arch Virol. 2015;160:1145–52.

    Article  CAS  PubMed  Google Scholar 

  179. Zoheir KMA, Allam AA. A rapid method for sexing the bovine embryo. Anim Reprod Sci. 2010;119:92–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Science and Engineering Research Board (SERB), Department of Science and Technology, Govt. of India, under Grant Nos. SRG/2020/001690 and TAR/2022/000312 and VIT under VIT rGEMS Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagan M. Obbineni.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

This study being a systematic review does not require any ethical approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 218 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S.D., Ramasamy, S. & Obbineni, J.M. An evaluation of nucleic acid-based molecular methods for the detection of plant viruses: a systematic review. VirusDis. (2024). https://doi.org/10.1007/s13337-024-00863-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13337-024-00863-0

Keywords

Navigation