Skip to main content

Advertisement

Log in

Molecular and immunogenic characterization of BHK-21 cell line adapted CVS-11 strain of rabies virus and future prospect in vaccination strategy

  • Original Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

Development of a cost effective quality vaccine is a key issue in rabies control programme in developing countries. With this perspective, in the present study, challenge virus standard (CVS)-11 strain of rabies virus was adapted to grow in BHK-21 cells, characterized, compared with other viruses including global vaccine strains and field isolates from Indian subcontinent and China at molecular level. This cell adapted virus was evaluated for the production of cost effective veterinary vaccine. The maximum virus titre achieved was 107 fluorescent focus unit (FFU)/mL at 10th passage level. There was no nucleotide difference in the nucleoprotein (N) and glycoprotein (G) genes after adaptation in cell line. Phylogenetic analysis showed that adapted virus was grouped with global vaccine strains, closest being with other CVS strains but distinct from the Indian field isolates. Global vaccine strains including cell adapted CVS-11 virus have 83–87 % identity at nucleotide level of G gene with Indian field viruses. Growth kinetics of cell culture adapted virus showed that the optimum virus titer (around 107 FFU/mL) could be obtained at around 48 h post infection by co-cultivation method using 0.1 multiplicity of infection inoculums at 37 °C. These findings can be used for up scaling of vaccine production. The protective efficacy of test vaccine produced using 106.95 FFU/mL cell culture harvest showed 1.17 IU/mL relative potency by NIH test. Further, adapted virus was found to be suitable for use in rapid fluorescent focus inhibition test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aga AM, Mekonnen Y, Hurisa B, Tesfaye T, Lemma H, Kebede G, Niguse D, Gwold G, Urga K. In vivo and in vitro cross neutralization studies of local rabies virus isolates with ERA based cell culture anti-rabies vaccine produced in Ethiopia. J Vaccines Vaccin. 2014;5:256.

    Google Scholar 

  2. Chavez JH, Yokosawa L, Oliveira TFM, Simoes CMO, Zanetti CR. No association between viral cytopathic effect in McCoy cells and MTT colorimetric assay for the in vitro anti-rabies evaluation. Virus Rev Res. 2013;1:10–8.

    Google Scholar 

  3. Faber M, Pulmanausahakul R, Nagao K, Prosniak M, Rice AB, Koprowski H, Schnell MJ, Dietzschold B. Identification of viral genomic elements responsible for rabies virus neuroinvasiveness. Proc Natl Acad Sci USA. 2004;101:16328–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Goswami A, Plun-Favreau J, Nicoloyannis N, Sampath G, Siddiqui MN, Zinsou JA. The real cost of rabies postexposure treatments. Vaccine. 2005;23:2970–6.

    Article  PubMed  Google Scholar 

  5. Guo C, Wang C, Luo S, Zhu S, Li H, Liu Y, Zhou L, Zhang P, Zhang X, Ding Y, Huang W, Wu K, Zhang Y, Rong W, Tian H. The adaptation of a CTN-1 rabies virus strain to high-titered growth in chick embryo cells for vaccine development. Virol J. 2014;11:85.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Gupta PK, Rai A, Rai N, Saini M. Immunogenicity of a plasmid DNA vaccine encoding glycoprotein gene of rabies virus CVS in mice and dogs. J Immunol Immunopathol. 2005;7:58–61.

    Google Scholar 

  7. Hampson K, Coudeville L, Lembo T, Sambo M, Kieffer A, Attlan M, Barrat J, Blanton JD, Briggs DJ, Cleaveland S, Costa P, Freuling CM, Hiby E, Knopf L, Leanes F, Meslin FX, Metlin A, Miranda ME, Muller T, Nel LH, Recuenco S, Rupprecht CE, Schumacher C, Taylor L, Vigilato MAN, Zinsstag J, Dushoff J. Estimating the global burden of endemic canine rabies. PLoS Negl Trop Dis. 2015;9:1–20.

    Google Scholar 

  8. Hurisa B, Mengeshaa A, Newayesilassiea B, Kergaa S, Kebedea G, Bankoviskyb D, Metlinc A, Urgaa K. Production of cell culture based anti-rabies vaccine in Ethiopia. Procedia Vaccinol. 2013;7:2–7.

    Article  Google Scholar 

  9. Iwasaki Y, Wiktor TJ, Koprowski H. Early events of rabies virus replication in tissue cultures. An electron microscopic study. Lab Invest. 1973;28:142–8.

    CAS  PubMed  Google Scholar 

  10. Jagannatha S, Gandhi PR, Vijayakumar R. Kinetics analysis of beta-propiolactone with tangential flow filtration (TFF) concentrated vero cell derived rabies viral protein. J Biol Sci. 2013;13:521–7.

    Article  Google Scholar 

  11. Jiao W, Yin X, Li Z, Lan X, Li X, Tian X, Li B, Yang B, Zhang Y, Liu J. Molecular characterization of China rabies virus vaccine strain. Virol J. 2011;8:2–11.

    Article  Google Scholar 

  12. Kumar M, Singh RP, Mishra B, Singh R, Reddy GBM, Patel A, Saravanan R, Gupta PK. Development of alternative approaches for in process quality control of rabies vaccine. Adv Anim Vet Sci. 2014;2:164–70.

    Article  Google Scholar 

  13. Liu Q, Xiong Y, Luo TR, Wei YC, Nan SJ, Liu F, Pan Y, Feng L, Zhu W, Liu K, Guo JG, Li HM. Molecular epidemiology of rabies in Guangxi Province, South of China. J Clin Virol. 2007;39:295–303.

    Article  CAS  PubMed  Google Scholar 

  14. Matsumoto S. Morphology of rabies virion and cytopathology of virus infected cells. Symp Ser Immunobiol Handb. 1974;21:25–34.

    Google Scholar 

  15. Matsumoto T, Ahmed K, Karunanayake D, Wimalaratne O, Nanayakkara S. Molecular epidemiology of human rabies viruses in Sri Lanka. Infect Genet Evol. 2013;18:160–7.

    Article  PubMed  Google Scholar 

  16. Mengesha AA, Hurisa B, Tesfaye T, Lemma H, Niguse D, Wold GG, Kebede A, Mesele T, Urga K. Adaptation of local rabies virus isolates to high growth titer and determination of pathogenicity to develop canine vaccine in Ethiopia. J Vaccines Vaccin. 2014;5:245.

    Google Scholar 

  17. Meslin M, Koprowski H, Kaplan MM. Laboratory techniques in rabies. 4th ed. Geneva: WHO; 1996.

    Google Scholar 

  18. Metlin A, Paulin L, Suomalainen S, Neuvonen E, Rybakov S, Mikhalishin V, Huovilainen A. Characterization of Russian rabies virus vaccine strain RV-97. Virus Res. 2008;132:242–7.

    Article  CAS  PubMed  Google Scholar 

  19. Ming P, Dua J, Tanga Q, Yanb J, Nadin-Davis SA, Li H, Taoa X, Huangd Y, Hud R, Liange G. Molecular characterization of the complete genome of a street rabies virus isolated in China. Virus Res. 2009;143:6–14.

    Article  CAS  PubMed  Google Scholar 

  20. Nadin-Davis SA, Sheen M, Wandeler AI. Recent emergence of the arctic rabies virus lineage. Virus Res. 2012;163:352–62.

    Article  CAS  PubMed  Google Scholar 

  21. Nadin-Davis SA, Turner G, Paul JPV, Madhusudana SN, Wandeler AI. Emergence of arctic-like rabies lineage in India. Emerg Infect Dis. 2007;13:111–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Nagaraja T, Madhusudana T, Desai A. Molecular characterization of the full length genome of a rabies virus isolate from India. Virus Genes. 2008;36:449–59.

    Article  CAS  PubMed  Google Scholar 

  23. Nogueira YL. Rabies in McCoy cell line. Part I. Cytopathic effect and replication. Rev Inst Adolfo Lutz. 1992;52:9–16.

    Google Scholar 

  24. OIE (World Organization for Animal Health). Rabies. In: OIE-Terrestrial Manual. 2013, pp. 1–28.

  25. Paldurai A, Singh RP, Gupta PK, Sharma B, Pandey KD. Growth Kinetics of Rabies Virus in BHK-21 Cells using fluorescent activated cell sorter (FACS) analysis and a monoclonal antibody based cell-ELISA. J Immunol Vaccine Technol. 2014;1:103.

    Google Scholar 

  26. Pant GR, Lavenir R, Wong FYK, Certoma A, Larrous F, Bhatta DR, Bourhy H, Stevens V, Dacheux L. Recent emergence and spread of an arctic-related phylogenetic lineage of rabies virus in Nepal. PLoS Negl Trop Dis. 2013;. doi:10.1371/journal.pntd.0002560.

    PubMed Central  PubMed  Google Scholar 

  27. Quiambo BP, Dimaano EM, Ambas C, Davis R, Banzhoff A, Malerczyk C. Reducing the cost of post-exposure rabies prophylaxis: efficacy of 0.1 ml PCEC rabies vaccine administrated intra-dermally using the Thai Red cross post-exposure regimen in patients severely exposed to laboratory-confirmed rabid animals. Vaccine. 2005;23:1709–14.

    Article  Google Scholar 

  28. Reddy GBM, Singh R, Singh RP, Singh KP, Gupta PK, Desai A, Shankar SK, Ramakrishnan MA, Verma R. Molecular characterization of Indian rabies virus isolates by partial sequencing of nucleoprotein (N) and phosphoprotein (P) genes. Virus Genes. 2011;43:13–7.

    Article  CAS  PubMed  Google Scholar 

  29. Singh NK, Meshram CD, Sonwane AA, Dahiya SS, Pawar SS, Chaturvedi VK, Saini M, Singh RP, Gupta PK. Protection of mice against lethal rabies virus challenge using short interfering RNAs (siRNAs) delivered through lentiviral vector. Mol Biotechnol. 2014;56:91–101.

    Article  CAS  PubMed  Google Scholar 

  30. Singh RP. Control strategies for peste des petits ruminants in small ruminants of India. Rev Sci Tech Off Int Epizoot. 2011;30:879–87.

    CAS  Google Scholar 

  31. Takayama-Ito M, Ito N, Yamada K, Sugiyama M, Minamoto N. Multiple amino acids in the glycoprotein of rabies virus are responsible for pathogenicity in adult mice. Virus Res. 2006;115:169–75.

    Article  CAS  PubMed  Google Scholar 

  32. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Tsiang H, Atanasiu P. Replication du virus rabique fixe en suspension cellular. CR Acad Sci. 1971;272:897–900.

    CAS  Google Scholar 

  34. WHO. WHO technical report series no. 931. Geneva: World Health Organization; 2005. pp. 1–87.

  35. WHO. WHO technical report series no. 941. Geneva: World Health Organization; 2007. pp. 1–96.

  36. Wiktor TJ, Clark HF. Chronic rabies virus infection of cell cultures. Infect Immun. 1972;6:988–95.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr V. K. Chaturvedi and Dr A. K. Tiwari and Director, IVRI for providing the necessary facilities. This work was in part funded by ICAR-Indian Veterinary Research Institute under the Project Code IXX08803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabindra Prasad Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, A.C., Upmanyu, V., Ramasamy, S. et al. Molecular and immunogenic characterization of BHK-21 cell line adapted CVS-11 strain of rabies virus and future prospect in vaccination strategy. VirusDis. 26, 288–296 (2015). https://doi.org/10.1007/s13337-015-0285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-015-0285-5

Keywords

Navigation