Skip to main content
Log in

Perturbation determinant and Levinson’s formula for Schrödinger operators with 1-D general point interaction

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the one-dimensional Schrödinger operator with properly connecting general point interaction at the origin. We derive a trace formula for trace of difference of resolvents of perturbed and unperturbed Schrödinger operators in terms of a Wronskian which results in an explicit expression for perturbation determinant. Using the estimate for large-time real argument on the trace norm of the resolvent difference of the perturbed and unperturbed Schrödinger operators we express the spectral shift function in terms of perturbation determinant. Under certain integrability conditions on the potential function, we calculate low-energy asymptotics for the perturbation determinant and prove an analog of Levinson’s formula

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The interested reader can consult Appendix (A) where explicit derivation of this estimate is provided.

References

  1. Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics, 2nd edn. AMS Chelsea Publishing, Providence, RI (2005) (With an appendix by Pavel Exner)

  2. Aktosun, T., Klaus, M., Weder, R.: Small-energy analysis for the self-adjoint matrix Schrödinger operator on the half line. J. Math. Phys. 52(10), 102101 (2011)

    Article  MathSciNet  Google Scholar 

  3. Aktosun, T., Weder, R.: High-energy analysis and Levinson’s theorem for the self-adjoint matrix Schrödinger operator on the half line. J. Math. Phys. 54, 012108 (2013)

    Article  MathSciNet  Google Scholar 

  4. Aktosun, T., Weder, R.: Direct and Inverse Scattering for the Matrix Schrödinger equation, Sciences 203. Springer, Cham (2021)

    Google Scholar 

  5. Deift, P., Trubowitz, E.: Inverse scattering on the line. Commun. Pure Appl. Math. 32(2), 121–251 (1979)

    Article  MathSciNet  Google Scholar 

  6. Demirel, S.: The spectral shift function and Levinson’s theorem for quantum star graphs. J. Math. Phys. 53, 082110 (2012)

    Article  MathSciNet  Google Scholar 

  7. Demirel, S., Usman, M.: Trace formulas for Schrödinger operators on the half-line. Bull. Math. Sci. 1(2), 397–427 (2011)

    Article  MathSciNet  Google Scholar 

  8. Demkov, Y.N., Ostrovskii, V.N.: Zero-Range Potentials and Their Applications in Atomic Physics. Leningrad University Press, Leningrad (1975) (in Russian). Plenum Press, New York/London (1988) (English translation)

  9. Exner, P.: Weakly coupled states on branching graphs. Lett. Math. Phys. 38(3), 313–320 (1996)

    Article  MathSciNet  Google Scholar 

  10. Exner, P., Grosse, H.: Some Properties of the One-dimensional Generalized Point Interactions (A torso), arXiv:math-ph/9910029

  11. Gerasimenko, N.I.: The inverse scattering problem on a noncompact graph. Teoret. Mat. Fiz. 75(2), 187–200 (1988)

    MathSciNet  Google Scholar 

  12. Harmer, M.S.: Inverse scattering for the matrix Schrödinger operator and Schrödinger operator on graphs with general self-adjoint boundary conditions. Anziam J. 44(1), 161–168 (2002)

    Article  MathSciNet  Google Scholar 

  13. Harmer, M.S.: The matrix Schrödinger operator and Schrödinger operator on graphs. In Ph.D. thesis. University of Auckland, New Zealand (2004)

  14. Harmer, M.S.: Inverse scattering on matrices with boundary conditions. J. Phys. A 38, 4875–4885 (2005)

    Article  MathSciNet  Google Scholar 

  15. Kohmoto, M., Koma, T., Nakamura, S.: The spectral shift function and the Friedel sum rule. Ann. H. Poincare 14, 1413–1424 (2013)

    Article  MathSciNet  Google Scholar 

  16. Krein, M.G.: On the trace formula in perturbation theory. Mat. Sb. 33(75), 597–626 (1953)

    MathSciNet  Google Scholar 

  17. Kurasov, P.: Distribution theory for discontinuous test functions and differential operators with generalized coefficients. J. Math. Anal. Appl. 201(1), 297–323 (1996)

    Article  MathSciNet  Google Scholar 

  18. Kuroda, S.T.: On a generalization of the Weinstein Aronszajn formula and the infinite determinant. Sci. Papers Coll. Gen. Ed. Univ. Tokyo 11, 1–12 (1961)

    MathSciNet  Google Scholar 

  19. Šeba, P.: The generalized point interaction in one dimension. Czech. J. Phys. B36, 667–673 (1986)

    Article  MathSciNet  Google Scholar 

  20. Usman, M., Zaidi, A.A.: Trace formulas for Schrödinger operators on star graphs with general matching conditions. J. Phys. A: Math. Theor. 51(36), 365301 (2018)

    Article  Google Scholar 

  21. Usman, M., Zia, M.D.: A trace formula, perturbation determinant and Levinson’s theorem for a class of quantum star graphs. Eur. Phys. J. Plus 137, 654 (2022)

    Article  Google Scholar 

  22. Weder, R.: Scattering theory for the matrix Schrödinger operator on the half line with general boundary conditions. J. Math. Phys. 56(9), 092103 (2015)

    Article  MathSciNet  Google Scholar 

  23. Weder, R.: Trace formulas for the matrix Schrödinger operator on the half-line with general boundary conditions. J. Math. Phys. 57(11), 112101 (2016)

    Article  MathSciNet  Google Scholar 

  24. Yafaev, D.R.: Mathematical Scattering Theory, Analytic Theory, Mathematical Surveys and Monographs, vol. 158. American Mathematical Society, Providence (2010)

    Book  Google Scholar 

  25. Yafaev, D.R.: Mathematical Scattering Theory: General Theory, Mathematical Surveys and Monographs, vol. 105. American Mathematical Society, Providence (1992)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.U. Formulated the original problem, M.F.A. came up with ways to solve it in discussion with M.U, M.D.Z performed the computations.

Corresponding author

Correspondence to M. Fazeel Anwar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Estimate on trace norm of resolvent difference

Appendix A: Estimate on trace norm of resolvent difference

Here we’ll provide an explicit derivation of the estimate

$$\begin{aligned} ||R_{V}^\mathcal {A}(-t)-R_{0}^\mathcal {A}(-t)||_1\le C_\epsilon t^{-\frac{3}{2}+\epsilon } \end{aligned}$$

for all \(\epsilon >0\) and large t. We will need the following lemma.

Lemma A.1

[6], Lemma 3.4] Let \(\mathcal {H}\) be a Hilbert space and \(f, g \in \mathcal {H}\). Assume that \(\mathcal {R}=(\cdot ,\,f)f-(\cdot ,\,g)g\) is an operator of rank two on \(\mathcal {H}\). Then, the trace norm of \(\mathcal {R}\) is given by

$$\begin{aligned} ||\mathcal {R}||_1=\sqrt{(||f||^2+||g||^2)^2-4|(f,g)|^2}. \end{aligned}$$
(A.1)

Moreover, if we let \(g=f+h\) then,

$$\begin{aligned} (||f||^2+||g||^2)^2-4|(f,g)|^2\le 6||h||^2||f||^2+3||h||^4. \end{aligned}$$
(A.2)

Lemma A.2

Assume that the potential V satisfies condition (1.2). Then the resolvents \(R_V^\mathcal {A}\) of \(H_V^\mathcal {A}\) and \(R_0^\mathcal {A}\) of \(H_0^\mathcal {A}\) satisfy, for all \(\epsilon >0\) and for large t

$$\begin{aligned} ||R_{V}^\mathcal {A}(-t)-R_{0}^\mathcal {A}(-t)||_1\le C_\epsilon t^{-\frac{3}{2}+\epsilon }. \end{aligned}$$

Proof

Let \(\mathcal {R}_1=R^{\mathcal {A}}_{V}(-t)-R^D_{V}(-t)+R^D_{0}(-t)-R^{\mathcal {A}}_{0}(-t)\) and \(\mathcal {R}_2=R^D_{V}(-t)-R^D_{0}(-t)\) then,

$$\begin{aligned} R^{\mathcal {A}}_{V}(-t)-R^{\mathcal {A}}_{0}(-t)=\mathcal {R}_1+\mathcal {R}_2. \end{aligned}$$

Hence

$$\begin{aligned} ||R^{\mathcal {A}}_{V}(-t)-R^{\mathcal {A}}_{0}(-t)||_1\le ||\mathcal {R}_1||_1+||\mathcal {R}_2||_1. \end{aligned}$$
(A.3)

Trace norm on \(\mathcal {R}_2\) can be estimated as \(||\mathcal {R}_2||_1\le ct^{-\frac{3}{2}+\epsilon }\) (c.f. Lemma 4.5.6. [24]). We only need to find an estimate on the trace norm of rank two operator \(\mathcal {R}_1\). By adding and subtracting the quantity

$$\begin{aligned} \dfrac{\theta _j^2(x_j,i\sqrt{t})}{L(i\sqrt{t})\theta _j^2(0,i\sqrt{t})}+\dfrac{e^{-2 x_j\sqrt{t}}}{(d-a)\sqrt{t}+bt-c}\hspace{1cm}j=1,2 \end{aligned}$$

in the diagonal of \(\mathcal {R}_1\) we can re-write it as

$$\begin{aligned} \mathcal {R}_1=\mathcal {S}_1+\mathcal {S}_2, \end{aligned}$$

where

$$\begin{aligned} \mathcal {S}_1=\begin{bmatrix} \frac{(a-\sqrt{t} b+1)e^{-2 x_1\sqrt{t}}}{(d-a)\sqrt{t}+bt-c}-\frac{\left( a+b\frac{\theta _2'(0,i\sqrt{t})}{\theta _2(0,i\sqrt{t})}+1\right) \theta _1^2(x_1,i\sqrt{t})}{L(i\sqrt{t})\theta _1^2(0,i\sqrt{t})} &{}0\\ 0 &{}\frac{(1-\sqrt{t} b-d)e^{-2 x_2\sqrt{t}}}{(d-a)\sqrt{t}+bt-c}-\frac{\left( b\frac{\theta _1'(0,i\sqrt{t})}{\theta _1(0,i\sqrt{t})}-d+1\right) \theta _2^2(x_2,i\sqrt{t})}{L(i\sqrt{t})\theta _2^2(0,i\sqrt{t})} \end{bmatrix} \end{aligned}$$

and

$$\begin{aligned} (\mathcal {S}_2)_{j,k}=\begin{bmatrix} \frac{\theta _j(x_j,i\sqrt{t})\theta _k(x_k,i\sqrt{t})}{L(i\sqrt{t})\theta _j(0,i\sqrt{t})\theta _k(0,i\sqrt{t})}-\frac{e^{-(x_j+x_k)\sqrt{t}}}{(d-a)\sqrt{t}+bt-c} \end{bmatrix}\hspace{1cm}j,k=1,2. \end{aligned}$$

Now, as \(\mathcal {S}_1\) is a diagonal matrix and to apply the definition of trace norm, we can let \(\mathcal {S}_1=I\mathcal {S}_1I\), where I is the second order identity matrix. This implies,

$$\begin{aligned} ||\mathcal {S}_1||_1=|\sigma _1|+|\sigma _2| \end{aligned}$$

where

$$\begin{aligned} |\sigma _1|=\int _0^{\infty }\left| \frac{(a-\sqrt{t} b+1)e^{-2 x_1\sqrt{t}}}{(d-a)\sqrt{t}+bt-c}-\frac{\left( a+b\frac{\theta _2'(0,i\sqrt{t})}{\theta _2(0,i\sqrt{t})}+1\right) \theta _1^2(x_1,i\sqrt{t})}{L(i\sqrt{t})\theta _1^2(0,i\sqrt{t})}\right| dx_1 \end{aligned}$$

and

$$\begin{aligned} |\sigma _2|=\int _0^{\infty }\left| \frac{(1-\sqrt{t} b-d)e^{-2 x_2\sqrt{t}}}{(d-a)\sqrt{t}+bt-c}-\frac{\left( b\frac{\theta _1'(0,i\sqrt{t})}{\theta _1(0,i\sqrt{t})}-d+1\right) \theta _2^2(x_2,i\sqrt{t})}{L(i\sqrt{t})\theta _2^2(0,i\sqrt{t})}\right| dx_2. \end{aligned}$$

For t large enough, these expressions can be simplified to

$$\begin{aligned} |\sigma _1|&\approx \left| \frac{(a-\sqrt{t} b+1)}{(d-a)\sqrt{t}+bt-c}\right| \int _0^{\infty }\left| e^{-2 x_1\sqrt{t}}-\theta _1^2(x_1,i\sqrt{t})\right| dx_1\\&=\left| \frac{(a-\sqrt{t} b+1)}{(d-a)\sqrt{t}+bt-c}\right| \int _0^{\infty }\left| \theta _1(x_1,i\sqrt{t})-e^{-x_1\sqrt{t}}\right| \left| \theta _1(x_1,i\sqrt{t})+e^{- x_1\sqrt{t}}\right| dx_1 \end{aligned}$$

and

$$\begin{aligned} |\sigma _2|\approx \left| \frac{(1-\sqrt{t} b-d)}{(d-a)\sqrt{t}+bt-c}\right| \int _0^{\infty }\left| \theta _2(x_2,i\sqrt{t})-e^{-x_2\sqrt{t}}\right| \left| \theta _2(x_2,i\sqrt{t})+e^{- x_2\sqrt{t}}\right| dx_2. \end{aligned}$$

To find estimates for \(|\sigma _1|\) and \(|\sigma _2|\) we use the following estimates for large t

$$\begin{aligned} \left| \theta _k(x_k,i\sqrt{t})-e^{-\sqrt{t}x_k}\right| \le \dfrac{m_1}{\sqrt{t}}e^{-\sqrt{t}x_k} \end{aligned}$$
(A.4)

and

$$\begin{aligned} \left| \theta _k(x_k,i\sqrt{t})+e^{-\sqrt{t}x_k})\right| \le \left( \frac{m_2}{\sqrt{t}}+2\right) e^{-\sqrt{t}x_k} \end{aligned}$$
(A.5)

This yields the following bounds

$$\begin{aligned} |\sigma _1|\le \left| \frac{(a-\sqrt{t} b+1)}{(d-a)\sqrt{t}+bt-c}\right| \frac{m_1(m_2+2\sqrt{t})}{2t^{3/2}}=|-m_1t^{-3/2}+O(t^{-2})|,\\ |\sigma _2|\le \left| \frac{(1-\sqrt{t} b-d)}{(d-a)\sqrt{t}+bt-c}\right| \frac{m_1(m_2+2\sqrt{t})}{2t^{3/2}}=|-m_1t^{-3/2}+O(t^{-2})|. \end{aligned}$$

Therefore

$$\begin{aligned} |\sigma _1|=|\sigma _2|=O(t^{-3/2}) \end{aligned}$$

and hence

$$\begin{aligned} ||\mathcal {S}_1||_1=O(t^{-3/2}). \end{aligned}$$

To find an estimate on the norm of \(\mathcal {S}_2\), we use Lemma (A.1). Clearly, \(\mathcal {S}_2=(\cdot ,f)f-(\cdot ,g)g\) is an operator of rank two, where

$$\begin{aligned}f_k(x_k)=\dfrac{-e^{-x_k\sqrt{t}}}{\sqrt{(d-a)\sqrt{t}+bt-c}}\quad \text { and }\quad g_k(x_k)=\dfrac{-\theta _k(x_k,i\sqrt{t})}{\sqrt{L(i\sqrt{t})}\theta _k(0,i\sqrt{t})}.\end{aligned}$$

Let \(h=g-f\), then

$$\begin{aligned} h_k(x_k)&=\dfrac{e^{-x_k\sqrt{t}}}{\sqrt{(d-a)\sqrt{t}+bt-c}}-\dfrac{\theta _k(x_k,i\sqrt{t})}{\sqrt{L(i\sqrt{t})}\theta _k(0,i\sqrt{t})}\\&=-\left( \dfrac{\theta _k(x_k,\sqrt{t}i)-e^{-\sqrt{t}x_k}}{\sqrt{L(i\sqrt{t})}\theta _k(0,i\sqrt{t})}+\left( \dfrac{1}{\sqrt{L(i\sqrt{t})}\theta _k(0,i\sqrt{t})}-\dfrac{1}{\sqrt{(d-a)\sqrt{t}+bt-c}}\right) e^{-\sqrt{t}x_k}\right) . \end{aligned}$$

To compute an estimate on \( ||h||^2=\sum _{k=1}^{2}\int _0^{\infty }\left| h_k(x_k)\right| ^2dx_k \), we use (2.13) and (A.4) and after some simplifications we obtain

$$\begin{aligned} ||h||^2\le \dfrac{m_1^2}{ \left( (d-a)\sqrt{t}+bt-c \right) {t}^{3/2}}. \end{aligned}$$

Similarly,

$$\begin{aligned} ||f||^2=\sum \limits _{k=1}^{2}\int \limits _0^{\infty }\left| \dfrac{-e^{-\sqrt{t}x_k}}{\sqrt{(d-a)\sqrt{t}+bt-c}} \right| ^2dx_k=\dfrac{1}{ \left( (d-a)\sqrt{t}+bt-c \right) \sqrt{t}}. \end{aligned}$$

The estimate on the right-hand side of inequality (A.2) is now given by

$$\begin{aligned} 6||h||^2||f||^2+3||h||^4&\le \frac{6m_1^2}{ \left( (d-a)\sqrt{t}+bt-c \right) ^2t^2}+\frac{3m_1^4}{ \left( (d-a)\sqrt{t}+bt-c \right) ^2t^3} \\&=\frac{3m_1^4+6m_1^2t}{\left( (d-a)\sqrt{t}+bt-c \right) ^2t^3}\\&=\frac{6m_1^2}{b^2t^4}+\frac{12m_1^2(a-d)}{b^3t^{\frac{9}{2}}}+O(t^{-5})\\&=O(t^{-4}). \end{aligned}$$

This implies

$$\begin{aligned} ||\mathcal {S}_2||_1=O(t^{-2}) \end{aligned}$$

and hence

$$\begin{aligned} ||\mathcal {R}_1||_1=O(t^{-\frac{3}{2}}). \end{aligned}$$

\(\square \)

The current estimates have been improved compared to those in [22] and [24], as they impose a condition \((\alpha >1/4)\) leading to \(||R-R_0 ||\le Ct^{(-2.5)}\) when \(\alpha \) approaches 1/4. In contrast, our results involve the parameter \(>0\), and as \(\epsilon \) approaches 0, we have \(||R-R_0 ||\le Ct^{(-1.5)}\). It is also worth noting that while Demiral in [6] proved a similar estimate for the Kirchhoff case, our case involves general 1D point interactions with additional parameters, making it challenging to derive estimates. In dealing with \(R_1=S_1+S_2\), where \(S_1\) doesn’t follow Lemma A1 of [6] entirely but only a part \((S_2)\), we observed that \(S_1\) is a diagonal matrix. To find an estimate for \(S_1\), we employed singular value decomposition (\(\sigma _1\) and \(\sigma _2\)) to compute its trace norm in the above proof.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, M.F., Usman, M. & Zia, M.D. Perturbation determinant and Levinson’s formula for Schrödinger operators with 1-D general point interaction. Anal.Math.Phys. 14, 57 (2024). https://doi.org/10.1007/s13324-024-00922-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-024-00922-1

Keywords

Mathematics Subject Classification

Navigation