Skip to main content
Log in

Well-posedness of a class of stochastic partial differential equations with fully monotone coefficients perturbed by Lévy noise

  • Original Article
  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article, we consider the following class of stochastic partial differential equations (SPDEs):

$$\begin{aligned} \left\{ \! \begin{aligned} \text {d} \textbf{X}(t)&=\text {A}(t,\textbf{X}(t))\text {d} t+\text {B}(t,\textbf{X}(t))\text {d}\text {W}(t)+\!\!\int _{\text {Z}}\!\gamma (t,\textbf{X}(t-),z)\widetilde{\pi }(\text {d} t,\text {d} z),\; t\!\in \![0,T],\\ \textbf{X}(0)&=\varvec{x} \in \mathbb {H}, \end{aligned} \right. \end{aligned}$$

with fully locally monotone coefficients in a Gelfand triplet \(\mathbb {V}\subset \mathbb {H}\subset \mathbb {V}^*\), where the mappings

$$\begin{aligned} \text {A}:[0,T]\times \mathbb {V}\rightarrow \mathbb {V}^*,\quad \text {B}:[0,T]\times \mathbb {V}\rightarrow \text {L}_2(\mathbb {U},\mathbb {H}), \quad \gamma :[0,T]\times \mathbb {V}\times \text {Z}\rightarrow \mathbb {H}, \end{aligned}$$

are measurable, \(\text {L}_2(\mathbb {U},\mathbb {H})\) is the space of all Hilbert-Schmidt operators from \(\mathbb {U}\rightarrow \mathbb {H}\), \(\text {W}\) is a \(\mathbb {U}\)-cylindrical Wiener process and \(\widetilde{\pi }\) is a compensated time homogeneous Poisson random measure. This class of SPDEs covers various fluid dynamic models and also includes quasi-linear SPDEs, the convection-diffusion equation, the Cahn-Hilliard equation, and the two-dimensional liquid crystal model. Under certain generic assumptions of \(\text {A},\text {B}\) and \(\gamma \), using the classical Faedo–Galekin technique, a compactness method and a version of Skorokhod’s representation theorem, we prove the existence of a probabilistic weak solution as well as pathwise uniqueness of solution. We use the classical Yamada-Watanabe theorem to obtain the existence of a unique probabilistic strong solution. Furthermore, we establish a result on the continuous dependence of the solutions on the initial data. Finally, we allow both diffusion coefficient \(\text {B}(t,\cdot )\) and jump noise coefficient \(\gamma (t,\cdot ,z)\) to depend on both \(\mathbb {H}\)-norm and \(\mathbb {V}\)-norm, which implies that both the coefficients could also depend on the gradient of solution. Under some assumptions on the growth coefficient corresponding to the \(\mathbb {V}\)-norm, we establish the global solvability results also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Albeverio, S., Brzeźniak, Z., Wu, J.-L.: Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients. J. Math. Anal. Appl. 371, 309–322 (2010)

    Article  MathSciNet  Google Scholar 

  2. Aldous, D.: Stopping times and tightness. Ann. Probab. 6, 335–340 (1978)

    Article  MathSciNet  Google Scholar 

  3. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis, 3rd edn. Springer, Berlin (2006)

    Google Scholar 

  4. Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics, vol. 93. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  5. Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden (1976)

    Book  Google Scholar 

  6. Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, New York (2010)

    Book  Google Scholar 

  7. Barbu, V., Röckner, M.: An operatorial approach to stochastic partial differential equations driven by linear multiplicative noise. J. Eur. Math. Soc. 17, 1789–1815 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bessaih, H., Hausenblas, E., Razafimandimby, P.A.: Strong solutions to stochastic hydrodynamical systems with multiplicative noise of jump type. NoDEA Nonlinear Differ. Equ. Appl. 22(6), 1661–1697 (2015)

    Article  MathSciNet  Google Scholar 

  9. Billingsley, P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics, 2nd edn. Wiley, New York (1999)

    Book  Google Scholar 

  10. Brzeźniak, Z., Gatarek, D.: Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces. Stoch. Process. Appl. 84, 187–225 (1999)

    Article  MathSciNet  Google Scholar 

  11. Brzeźniak, Z., Hausenblas, E., Razafimandimby, P.A.: Stochastic reaction-diffusion equations driven by jump processes. Potential Anal. 49, 131–201 (2018)

    Article  MathSciNet  Google Scholar 

  12. Brzeźniak, Z., Hausenblas, E., Zhu, J.: 2D stochastic Navier–Stokes equations driven by jump noise. Nonlinear Anal. 79, 122–139 (2013)

    Article  MathSciNet  Google Scholar 

  13. Brzeźniak, Z., Liu, W., Zhu, J.: Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise. Nonlinear Anal. Real World Appl. 17, 283–310 (2014)

    Article  MathSciNet  Google Scholar 

  14. Brzeźniak, Z., Peng, X., Zhai, J.: Well-posedness and large deviations for 2-D stochastic Navier–Stokes equations with jumps. J. Eur. Math. Soc. (2022). https://doi.org/10.4171/jems/1214

    Article  Google Scholar 

  15. Burkholder, D.L.: The best constant in the Davis inequality for the expectation of the martingale square function. Trans. Am. Math. Soc. 354, 91–105 (2002)

    Article  MathSciNet  Google Scholar 

  16. Chow, P.L.: Large deviation problem for some parabolic Itô equations. Commun. Pure Appl. Math. 45, 97–120 (1992)

    Article  Google Scholar 

  17. Chueshov, I., Millet, A.: Stochastic 2D hydrodynamical type systems: well posedness and large deviations. Appl. Math. Optim. 61, 379–420 (2010)

    Article  MathSciNet  Google Scholar 

  18. Cyr, J., Nguyen, P., Temam, R.: Stochastic one layer shallow water equations with Lévy noise. Discrete Contin. Dyn. Syst. Ser. B 24, 3765–3818 (2019)

    MathSciNet  Google Scholar 

  19. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, 2nd edn. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  20. Dinculeanu, N.: Vector Integration and Stochastic Integration in Banach Spaces. Pure and Applied Mathematics, p. xvi+424. Wiley, New York (2000)

    Book  Google Scholar 

  21. Dong, Z., Xie, Y.: Global solutions of stochastic 2D Navier–Stokes equations with Lévy noise. Sci. China Ser. A 52, 1497–1524 (2009)

    Article  MathSciNet  Google Scholar 

  22. Dong, Z., Zhai, J.: Martingale solutions and Markov selection of stochastic 3D Navier–Stokes equations with jump. J. Differ. Equ. 250, 2737–2778 (2011)

    Article  MathSciNet  Google Scholar 

  23. Gess, B.: Strong solutions for stochastic partial differential equations of gradient type. J. Funct. Anal. 263, 2355–2383 (2012)

    Article  MathSciNet  Google Scholar 

  24. Gyöngy, I.: On stochastic equations with respect to semimartingales III. Stochastics 7, 231–254 (1982)

    Article  MathSciNet  Google Scholar 

  25. Gyöngy, I., Krylov, N.V.: On stochastic equations with respect to semimartingales II. Itô formula in Banach spaces. Stochastics 6, 153–173 (1982)

    Article  Google Scholar 

  26. Gyöngy, I., Šiška, D.: Itô formula for processes taking values in intersection of finitely many Banach spaces. Stoch. PDE: Anal. Comput. 5, 428–455 (2017)

    Article  Google Scholar 

  27. Huang, X., Liu, W.: Poisson stable solutions for stochastic PDEs driven by Lévy noise. J. Differ. Equ. 383, 270–323 (2024)

    Article  Google Scholar 

  28. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland Publishing Company, Amsterdam (1981)

    Google Scholar 

  29. Kosmala, T., Riedle, M.: Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete Contin. Dyn. Syst. Ser. B 26, 2879–2898 (2021)

    MathSciNet  Google Scholar 

  30. Krylov, N.V., Rozovskii, B.L.: Stochastic evolution equations. J. Math. Sci. 16, 1233–1277 (1981)

    Article  Google Scholar 

  31. Kunita, H.: Stochastic Flows and Jump-Diffusions, Probability Theory and Stochastic Modelling, vol. 92. Springer, Singapore (2019)

    Book  Google Scholar 

  32. Lions, J.L.: Quelques Méthodes de Résolution des Problémes aux Limites Non linéaires. Dunod, Paris (1969)

    Google Scholar 

  33. Liu, W.: Existence and uniqueness of solutions to nonlinear evolution equations with locally monotone operators. Nonlinear Anal. 75, 7543–7561 (2011)

    Article  MathSciNet  Google Scholar 

  34. Liu, W., Röckner, M.: SPDE in Hilbert space with locally monotone coefficients. J. Funct. Anal. 259, 2902–2922 (2010)

    Article  MathSciNet  Google Scholar 

  35. Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction. Springer, Berlin (2015)

    Book  Google Scholar 

  36. Liu, W., Röckner, M., da Silva, J.L.: Strong dissipativity of generalized time-fractional derivatives and quasi-linear (stochastic) partial differential equations. J. Funct. Anal. 281, 109135 (2021)

    Article  MathSciNet  Google Scholar 

  37. Liu, W., Röckner, M., da Silva, J.L.: Quasi-linear (stochastic) partial differential equations with time-fractional derivatives. SIAM J. Math. Anal. 50, 2588–2607 (2018)

    Article  MathSciNet  Google Scholar 

  38. Manna, U., Mohan, M.T., Sritharan, S.S.: Stochastic non-resistive magnetohydrodynamic system with Lévy noise. Random Oper. Stoch. Equ. 25, 155–194 (2017)

    Article  MathSciNet  Google Scholar 

  39. Ma, T., Zhu, R.: Wong–Zakai approximation and support theorem for SPDEs with locally monotone coefficients. J. Math. Anal. Appl. 469, 623–660 (2019)

    Article  MathSciNet  Google Scholar 

  40. Métivier, M.: Stochastic Partial Differential Equations in Infinite-Dimensional Spaces. Scuola Normale Superiore, Pisa (1988)

    Google Scholar 

  41. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)

    Article  MathSciNet  Google Scholar 

  42. Mohan, M.T.: Martingale solutions of two and three dimensional stochastic convective Brinkman-Forchheimer equations forced by Lévy noise. arXiv:2109.05510

  43. Mohan, M.T.: Well-posedness and asymptotic behavior of stochastic convective Brinkman–Forchheimer equations perturbed by pure jump noise. Stoch. Partial Differ. Equ. Anal. Comput. 10(2), 614–690 (2022)

    MathSciNet  Google Scholar 

  44. Mohan, M.T., Sritharan, S.S.: \(\mathbb{L} ^p\)-solutions of the stochastic Navier–Stokes equations subject to Lévy noise with \(\mathbb{L} ^m(\mathbb{R}^m)\). Evol. Equ. Control Theory 6, 409–425 (2017)

    Article  MathSciNet  Google Scholar 

  45. Mohan, M.T., Sritharan, S.S.: Stochastic Navier–Stokes equations perturbed by Lévy noise with hereditary viscosity. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22, 1950006 (2019)

    Article  MathSciNet  Google Scholar 

  46. Motyl, E.: Stochastic Navier–Stokes equations driven by Lévy noise in unbounded 3D domains. Potential Anal. 38, 863–912 (2013)

    MathSciNet  Google Scholar 

  47. Motyl, E.: Stochastic hydrodynamic-type evolution equations driven by Lévy noise in 3D unbounded domains-abstract framework and applications. Stoch. Process. Appl. 124, 2052–2097 (2014)

    Article  Google Scholar 

  48. Motyl, E.: Existence of a martingale solution of the stochastic Hall-MHD equations perturbed by Poisson type random forces on \(\mathbb{R}^3\). arXiv:2109.08999

  49. Neelima, Šiška, D.: Coercivity condition for higher moment a priori estimates for nonlinear SPDE and existence of a solution under local monotonicity. Stochastics 92, 684–715 (2020)

    Article  MathSciNet  Google Scholar 

  50. Nguyen, P., Tawri, K., Temam, R.: Nonlinear stochastic parabolic partial differential equations with a monotone operator of the Ladyzenskaya–Smagorinsky type, driven by a Lévy noise. J. Funct. Anal. 281, 109157 (2021)

    Article  Google Scholar 

  51. Pardoux, E.: Sur des équations aux dérivées partielles stochastiques monotones. C. R. Acad. Sci. 275, A101–A103 (1974)

    Google Scholar 

  52. Pardoux, E.: Équations aux dérivées partielles stochastiques non linéaires monotones, Ph.D. Thesis. Université Paris XI (1975)

  53. Peng, X., Yang, J., Zhai, J.: Well-posedness of stochastic 2D hydrodynamics type systems with multiplicative Lévy noises. Electron. J. Probab. 27, 31 (2022)

    Article  Google Scholar 

  54. Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  55. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, Springer, Berlin (2007)

    Google Scholar 

  56. Ren, J., Röckner, M., Wang, F.Y.: Stochastic generalized porous media and fast diffusion equations. J. Differ. Equ. 238, 118–154 (2007)

    Article  MathSciNet  Google Scholar 

  57. Röckner, M., Shang, S., Zhang, T.: Well-posedness of stochastic partial differential equations with fully local monotone coefficients. Math. Ann. (2024). https://doi.org/10.1007/s00208-024-02836-6

  58. Röckner, M., Schmuland, B., Zhang, X.: Yamada–Watanabe theorem for stochastic evolution equations in infinite dimensions. Condens. Matter Phys. 11, 247–259 (2008)

    Article  Google Scholar 

  59. Röckner, M., Wang, F.-Y.: Non-monotone stochastic generalized porous media equations. J. Differ. Equ. 245, 3898–3935 (2008)

    Article  MathSciNet  Google Scholar 

  60. Röckner, M., Zhang, X.: Stochastic tamed 3D Navier–Stokes equations: existence, uniqueness and ergodicity. Probab. Theory Relat. Fields 145, 211–267 (2009)

    Article  MathSciNet  Google Scholar 

  61. Sakthivel, K., Sritharan, S.S.: Martingale solutions for stochastic Navier–Stokes equations driven by Lévy noise. Evol. Equ. Control Theory 1, 355–392 (2012)

    Article  MathSciNet  Google Scholar 

  62. Simon, J.: Compact sets in the space \(L^p(0, T; B)\). Ann. Mat. 146, 65–96 (1987)

    Article  MathSciNet  Google Scholar 

  63. Tan, Z., Wang, H., Wang, Y.: Time-splitting methods to solve Hall-MHD systems with Lévy noises. Kinet. Relat. Models 12, 243–267 (2019)

    Article  MathSciNet  Google Scholar 

  64. Temam, R.: Navier–Stokes equations and nonlinear functional analysis, 2nd edn. In: CBMS-NSF Regional Conference Series in Applied Mathematics (1995)

  65. Wang, J., Yang, H., Zhai, J., Zhang, T.: Irreducibility of SPDEs driven by pure jump noise. arXiv:2207.11488

  66. Xiong, J., Zhai, J.: Large deviations for locally monotone stochastic partial differential equations driven by Lévy noise. Bernoulli 24, 799–822 (2021)

    Google Scholar 

  67. Zeidler, E.: Nonlinear Functional Analysis and its Applications: II/B: Nonlinear Monotone Operators. Springer, Berlin (1990)

    Book  Google Scholar 

  68. Zhai, J., Zhang, T.: Large deviations for 2-D stochastic Navier–Stokes equations driven by multiplicative Lévy noises. Bernoulli 21, 2351–2392 (2015)

    Article  MathSciNet  Google Scholar 

  69. Zhao, H.: Yamada–Watanabe theorem for stochastic evolution equation driven by Poisson random measure. ISRN Probab. Stat. 2014, 7 (2014)

    Article  Google Scholar 

  70. Zhu, J., Brzeźniak, Z., Liu, W.: Maximal inequalities and exponential estimates for stochastic convolutions driven by Lévy-type processes in Banach spaces with application to stochastic quasi-geostrophic equations. SIAM J. Math. Anal. 51, 2121–2167 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author would like to thank Ministry of Education, Government of India - MHRD for financial assistance. M. T. Mohan would like to thank the Department of Science and Technology (DST) Science & Engineering Research Board (SERB), India for a MATRICS Grant (MTR/2021/000066). The authors sincerely would like to thank the reviewers for their valuable comments and suggestions, which helped us to improve the manuscript significantly.

Funding

DST-SERB, India, MTR/2021/000066 (M. T. Mohan).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally.

Corresponding author

Correspondence to Manil T. Mohan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Some useful results

Appendix A: Some useful results

In this section, we state some useful results for the tightness of the laws as well as the well-known Skorokhod’s representation theorem. Let \((\mathbb {Y},\mathcal {B}(\mathbb {Y}))\) be a separable and complete metric space.

Lemma A.1

(Prokhorov Theorem, [9, Sect. 5]). A sequence of probability measures \(\{\mu _m\}_{m\in \mathbb {N}}\) on \((\mathbb {Y},\mathcal {B}(\mathbb {Y}))\) is tight if and only if it is relatively compact, that is, there exists a subsequence \(\{\mu _{m_k}\}_{k\in \mathbb {N}}\) which converges weakly to a probability measure \(\mu \).

Lemma A.2

[62, Theorem 5]. Let \(1\le p<\infty \). Let \(\mathbb {V},\mathbb {H}\) and \(\mathbb {Y}\) be Banach spaces satisfying the embedding \(\mathbb {V}\subset \mathbb {H}\subset \mathbb {Y}\). Suppose that the embedding \(\mathbb {V}\subset \mathbb {H}\) is compact. If \(\Gamma \) is a bounded subset of \(\text {L}^p(0,T;\mathbb {V})\) satisfying

$$\begin{aligned} \lim _{\delta \rightarrow 0^+} \sup _{f\in \Gamma }\int _0^{T-\delta }\Vert f(t+\delta )-f(t)\Vert _{\mathbb {Y}}^p\text {d}t=0, \end{aligned}$$

then \(\Gamma \) is a relatively compact subset of \(\text {L}^p(0,T;\mathbb {H})\).

Based on the previous lemma, the following result has been established in the work [57] which prove the tightness of the laws in \(\text {L}^p(0,T;\mathbb {H})\).

Lemma A.3

[57, Lemma 5.2]. Let \(1\le p<\infty \). Let \(\mathbb {V},\mathbb {H}\) and \(\mathbb {Y}\) be Banach spaces satisfying the embedding \(\mathbb {V}\subset \mathbb {H}\subset \mathbb {Y}\). Suppose that the embedding \(\mathbb {V}\subset \mathbb {H}\) is compact. Let \(\{\textbf{Y}_m\}_{m\in \mathbb {N}}\) be a sequence of the stochastic processes. If

$$\begin{aligned} \lim _{N\rightarrow \infty }\sup _{m\in \mathbb {N}}\mathbb {P}\bigg (\int _0^T\Vert \textbf{Y}_m(t)\Vert _\mathbb {V}^p\text {d}t>N\bigg )=0, \end{aligned}$$
(A.1)

and for any \(\epsilon >0\),

$$\begin{aligned} \lim _{\delta \rightarrow 0^+}\sup _{m\in \mathbb {N}}\mathbb {P}\bigg (\int _0^{T-\delta }\Vert \textbf{Y}_m(t+\delta )-\textbf{Y}_m(t)\Vert _{\mathbb {Y}}^p\text {d}t>\epsilon \bigg )=0. \end{aligned}$$
(A.2)

Then, \(\{\textbf{Y}_m\}_{m\in \mathbb {N}}\) is tight in \(\text {L}^p(0,T;\mathbb {H})\).

Let us now recall the following version of the Skorokhod’s representation theorem.

Theorem A.4

[50, Theorem A.1], [13, Theorem C.1]. Let \((\Omega ,\mathscr {F},\mathbb {P})\) be a probability space and \(\mathbb {Y}^1,\mathbb {Y}^2\) be two complete separable metric spaces. Let \(\chi _m:\Omega \rightarrow \mathbb {Y}^1\times \mathbb {Y}^2,\; m\in \mathbb {N}\), be a sequence of weakly convergent random variables with laws \(\{\rho _m\}_{m\in \mathbb {N}}\). For \(j=1,2\) let \(\Pi _j:\mathbb {Y}^1\times \mathbb {Y}^2\rightarrow \mathbb {Y}^j\) denote the natural projection, that is,

$$\begin{aligned} \Pi _j(\chi ^1,\chi ^2)=\chi ^j,\ \text { for all }\ (\chi ^1,\chi ^2)\in \mathbb {Y}^1\times \mathbb {Y}^2. \end{aligned}$$

Finally, we assume that the random variables \(\Pi _1(\chi _m)=\chi _m^1\) on \(\mathbb {Y}^1\) have the same law, independent of m.

Then, there exists a family of \(\mathbb {Y}^1\times \mathbb {Y}^2\)-valued random variables \(\{\widehat{\chi }_m\}_{m\in \mathbb {N}}\) on the probability space \((\widehat{\Omega },\widehat{\mathscr {F}},\widehat{\mathbb {P}}):=\big ([0,1)\times [0,1), \mathcal {B}([0,1)\times [0,1)), \text { Lebesgue measure}\big )\) and a random variable \(\widehat{\chi }_\infty \) on \((\widehat{\Omega },\widehat{\mathscr {F}},\widehat{\mathbb {P}})\) such that the following statements hold:

  1. (1)

    The law of \(\{\widehat{\chi }_m\}\) is \(\{\rho _m\}\), for every \(m\in \mathbb {N}\),

  2. (2)

    \(\widehat{\chi }_m\rightarrow \widehat{\chi }_\infty \) in \(\mathbb {Y}^1\times \mathbb {Y}^2,\;\widehat{\mathbb {P}}\)-a.s.,

  3. (3)

    \(\widehat{\chi }_m^1=\widehat{\chi }_\infty ^1\) everywhere on \(\widehat{\Omega }\), for every \(m\in \mathbb {N}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Mohan, M.T. Well-posedness of a class of stochastic partial differential equations with fully monotone coefficients perturbed by Lévy noise. Anal.Math.Phys. 14, 44 (2024). https://doi.org/10.1007/s13324-024-00898-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-024-00898-y

Keywords

Mathematics Subject Classification

Navigation