Skip to main content
Log in

Properties of some elliptic Hill’s potentials

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study Hill’s differential equation with potential expressed by elliptic functions which arises in some problems of physics and mathematics. Analytical method can be applied to study the local properties of the potential in asymptotic regions of the parameter space. The locations of the saddle points of the potential are determined, the locations of turning points can be determined too when they are close to a saddle point. Combined with the quadratic differential associated with the differential equation, these local data give a qualitative explanation for the asymptotic eigensolutions obtained recently. A relevant topic is about the generalisation of Floquet theorem for ODE with doubly-periodic elliptic function coefficient which bears some new features compared to the case of ODE with real valued singly-periodic coefficient. Beyond the local asymptotic regions, global properties of the elliptic potential are studied using numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Taking into account the 1/2 factor, one needs to make the following change to the spectral solutions given in reference [4]: for the solution of case (A), \(\mu \) is changed to \(\mu -i/2\), that means \(i\mu \) is shifted to \(i\mu +1/2\); for the solution of case (B), \(\mu \) is changed to \(\mu +k^{\,\prime }/2\), that means \(\mu /k^{\,\prime }\) is shifted to \(\mu /k^{\,\prime }+1/2\). Notice that in [4] parameters are denoted by letters different from the ones used in this paper.

References

  1. Arscott, F.M.: Periodic Differential Equations. Pergamon Press, Oxford (1964)

    Google Scholar 

  2. Magnus, W., Winkler, S.: Hill’s Equation. Wiley, New York (1966)

    Google Scholar 

  3. Eastham, M.S.P.: The Spectral Theory of Periodic Differential Equations. Scottish Academic Press, Edinburgh (1973)

    Google Scholar 

  4. He, W.: Spectra of elliptic potentials and supersymmetric gauge theories. J. High Energy Phys. 08, 070 (2020). https://doi.org/10.1007/JHEP08(2020)070

    Article  MathSciNet  Google Scholar 

  5. Hill, G.W.: On the Part of the Motion of the Lunar Perigee Which is a Function of the Mean Motions of the Sun and Moon. Wilson, Cambridge (1877)

    Google Scholar 

  6. Gutzwiller, M.C.: Moon–Earth–Sun: the oldest three-body problem. Rev. Mod. Phys. 70, 589–639 (1998). https://doi.org/10.1103/RevModPhys.70.589

    Article  Google Scholar 

  7. Novikov, S.P.: A periodic problem for the Korteweg–de Vries equation. Funct. Anal. Appl. 8, 236–246 (1974). https://doi.org/10.1007/BF01075697

    Article  MathSciNet  Google Scholar 

  8. Lax, P.D.: Periodic solutions of the KdV equation. Commun. Pure Appl. Math. 28, 141–188 (1975). https://doi.org/10.1002/cpa.3160280105

    Article  MathSciNet  Google Scholar 

  9. Krichever, I.M.: Methods of algebraic geometry in the theory of non-linear equations. Russ. Math. Surv. 32, 185–213 (1977). https://doi.org/10.1070/RM1977v032n06ABEH003862

    Article  Google Scholar 

  10. Treibich, A., Verdier, J.-L.: Revêtements exceptionnels et sommes de 4 nombres triangulaires. Duke Math. J. 68(2), 217–236 (1992). https://doi.org/10.1215/S0012-7094-92-06809-8

    Article  MathSciNet  Google Scholar 

  11. Treibich, A.: New elliptic potentials. Acta Appl. Math. 36, 27–48 (1994). https://doi.org/10.1007/BF01001541

    Article  MathSciNet  Google Scholar 

  12. Darboux, G.: Sur une équation linéare. C. R. Acad. Sci. Paris 94, 1645–1648 (1882)

    Google Scholar 

  13. Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang–Mills theory. Nucl. Phys. B 426, 19–52 (1994). https://doi.org/10.1016/0550-3213(94)90124-4

    Article  MathSciNet  Google Scholar 

  14. Seiberg, N., Witten, E.: Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD. Nucl. Phys. B 431, 484–550 (1994). https://doi.org/10.1016/0550-3213(94)90214-3

    Article  MathSciNet  Google Scholar 

  15. Nekrasov, N., Shatashvili, S.: Quantization of integrable systems and four dimensional gauge theories. In: Exner, P. (ed.) 16th International Congress on Mathematical Physics: Prague, 2009, pp. 265–289, World Scientific, Singapore (2010). https://doi.org/10.1142/9789814304634_0015

  16. He, W.: N = 2 supersymmetric QCD and elliptic potentials. J. High Energy Phys. 1411, 030 (2014). https://doi.org/10.1007/JHEP11(2014)030

    Article  MathSciNet  Google Scholar 

  17. He, W.: Combinatorial approach to Mathieu and Lamé equations. J. Math. Phys. 56, 072302 (2015). https://doi.org/10.1063/1.4926954

    Article  MathSciNet  Google Scholar 

  18. He, W.: A new treatment for some Schrödinger operators I: the eigenvalue. Commun. Theor. Phys. 69, 115–126 (2018). https://doi.org/10.1088/0253-6102/69/2/115

    Article  MathSciNet  Google Scholar 

  19. He, W.: A new treatment for some Schrödinger operators II: the wave function. Commun. Theor. Phys. 69, 645–654 (2018). https://doi.org/10.1088/0253-6102/69/6/645

    Article  MathSciNet  Google Scholar 

  20. Li, J.C., Zhou, X.C.: Asymptotic Methods in Mathematics and Physics. Science Press, Beijing (1998)

    Google Scholar 

  21. Strebel, K.: Quadratic Differential. Springer, Berlin (1984)

    Book  Google Scholar 

  22. Shapere, A.D., Vafa, C.: BPS Structure of Argyres–Douglas superconformal theories. arXiv:hep-th/9910182

  23. Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing, Hitchin systems, and the WKB approximation. Adv. Math. 234, 239–403 (2013). https://doi.org/10.1016/j.aim.2012.09.027

    Article  MathSciNet  Google Scholar 

  24. Bridgeland, T., Smith, I.: Quadratic differentials as stability conditions. Publ. Math. de l’IHES 121, 155–278 (2015). https://doi.org/10.1007/s10240-014-0066-5

    Article  MathSciNet  Google Scholar 

  25. Gennes, P.G., Prost, J.: The Physics of Liquid Crystals. Clarendon Press, Wotton-under-Edge (1993)

    Book  Google Scholar 

  26. Chandrasekhar, S.: Liquid Crystals. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  27. Hermite, C.: Sur quelques applications des fonctions elliptiques. Gauthier-Villars, Paris (1885)

    Google Scholar 

  28. Arscott, F.M., Wright, G.P.: Floquet theory for doubly-periodic differential equations. Arch. Math. 5, 111–124 (1969). https://doi.org/10.1007/BFb0076813

    Article  MathSciNet  Google Scholar 

  29. Sleeman, B.D., Smith, P.D., Wright, G.P.: Doubly-periodic Floquet theory. Proc. R. Soc. Lond. A 391, 125–147 (1984). https://doi.org/10.1098/rspa.1984.0007

    Article  MathSciNet  Google Scholar 

  30. He, W., Liu, C.Y.: Oscillatory states of quantum Kapitza pendulum. Ann. Phys. 449, 169218 (2023). https://doi.org/10.1016/j.aop.2023.169218

    Article  MathSciNet  Google Scholar 

  31. Müller, H.J.W.: Asymptotic expansions of ellipsoidal wave functions and their characteristic numbers. Math. Nachr. 31, 89–101 (1966). https://doi.org/10.1002/mana.19660310108

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by a Grant from CWNU (No. 18Q068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei He.

Ethics declarations

Conflict of interest

W.H. and P.S. have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Su, P. Properties of some elliptic Hill’s potentials. Anal.Math.Phys. 14, 40 (2024). https://doi.org/10.1007/s13324-024-00897-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-024-00897-z

Keywords

Mathematics Subject Classification

Navigation