Skip to main content
Log in

Nonlinear Schrödinger equation with nonzero boundary conditions revisited: Dbar approach

  • Research
  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

The Dbar dressing method is extended to study the focusing/defocusing nonlinear Schrödinger (NLS) equation with nonzero boundary condition. A special type of complex function is considered. The function is meromorphic outside an annulus with center 0 and satisfies a local Dbar problem inside the annulus. The theory of such function is extended to construct the Lax pair of the NLS equation with nonzero boundary condition. In this procedure, the relation between the NLS potential and the solution of the Dbar problem is established. A certain distribution for the Dbar problem is introduced to obtain the focusing/defocusing NLS equation and the conservation laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Zakharov, V.E., Shabat, A.B.: Interaction between solitons in a stable medium. Sov. Phys. JETP 37, 823–828 (1973)

    Google Scholar 

  2. Kawata, T., Inoue, H.: Exact solutions of the derivative nonlinear Schrödinger equation under the nonvanishing conditions. J. Phys. Soc. Jpn. 44, 1968–1976 (1978)

    MATH  Google Scholar 

  3. Kawata, T., Inoue, H.: Inverse scattering method for nonlinear evolution equations under nonvanishing conditions. J. Phys. Soc. Jpn. 44, 1722–1729 (1978)

    MathSciNet  MATH  Google Scholar 

  4. Chen, X.J., Lam, W.K.: Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Phys. Rev. E 69, 066604 (2004)

    MathSciNet  Google Scholar 

  5. Prinari, B., Ablowitz, M.J., Biondini, G.: Inverse scattering transform for vector nonlinear Schrödinger equation with non-vanishing boundary conditions. J. Math. Phys. 47, 063508 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Ablowitz, M.J., Biondini, G., Prinari, B.: Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with nonvanishing boundary conditions. Inverse Probl. 23, 1711–1758 (2007)

    MATH  Google Scholar 

  7. Prinari, B., Biondini, G., Trubatch, A.D.: Inverse scattering transform for the multi-component nonlinear Schrödinger equation with nonzero boundary conditions. Stud. Appl. Math. 126, 245–302 (2010)

    MATH  Google Scholar 

  8. Demontis, F., Prinari, B., van der Mee, C., Vitale, F.: The inverse scattering transform for the defocusing nonlinear Schrödinger equations with nonzero boundary conditions. Stud. Appl. Math. 131, 1–40 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Biondini, G., Kovačić, G.: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 55, 031506 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Demontis, F., Prinari, B., van der Mee, C., Vitale, F.: The inverse scattering transform for the focusing nonlinear Schrödinger equation with asymmetric boundary condition. J. Math. Phys. 55, 101505 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Biondini, G., Prinari, B.: On the spectrum of the Dirac operator and the existence of discrete eigenvalues for the defocusing nonlinear Schrödinger equation. Stud. Appl. Math. 132, 138–159 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Kraus, D., Biondini, G.K.G.: The focusing Manakov system with nonzero boundary conditions. Nonlinearity 28, 3101–3151 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Prinari, B., Vitale, F., Biondini, G.: Dark-bright soliton solutions with nontrivial polarization interactions for the three-component defocusing nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 56, 071505 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Prinari, B., Vitale, F.: Inverse scattering transform for the focusing nonlinear Schrödinger equation with one-sided nonzero boundary condition. Contemp. Math. 651, 157–194 (2015)

    MATH  Google Scholar 

  15. van der Mee, C.: Inverse scattering transform for the discrete focusing nonlinear Schrödinger equation with nonvanishing boundary conditions. J. Nonlinear Math. Phys. 22, 233–264 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Biondini, G., Kraus, D.: Inverse scattering transform for the defocusing Manakov system with nonzero boundary conditions. SIAM J. Math. Anal. 47, 706–757 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Biondini, G., Fagerstrom, E., Prinari, B.: Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions. Physica D 333, 117–136 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Biondini, G., Kraus, D.K., Prinari, B.: The three-component defocusing nonlinear Schrödinger equation with nonzero boundary conditions. Commun. Math. Phys. 348, 475–533 (2016)

    MATH  Google Scholar 

  19. Pichler, M., Biondini, G.: On the focusing non-linear Schrödinger equation with non-zero boundary conditions and double poles. IMA J. Appl. Math. 82, 131–151 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Ablowitz, M.J., Luo, X.D., Musslimani, Z.H.: Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 59, 011501 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Prinari, B., Demontis, F., Li, S.T., Horikis, T.P.: Inverse scattering transform and soliton solutions for square matrix nonlinear Schrödinger equations with non-zero boundary conditions. Physica D 368, 22–49 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Feng, B.F., Luo, X.D., Ablowitz, M.J., Musslimani, Z.H.: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions. Nonlinearity 31, 5385–5409 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Zhu, J.Y., Wang, L.L.: Kuznetsov-Ma solution and Akhmediev breather for TD equation. Commun. Nonlinear Sci. Numer. Simul. 67, 555–567 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Zhu, J.Y., Wang, L.L., Qiao, Z.J.: Inverse spectral transform for the Ragnisco-Tu equation with Heaviside initial condition. J. Math. Anal. Appl. 474, 452–466 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Zhu, J.Y., Wang, X.R.: Broer-Kaup system revisit: inelastic interaction and blowup solutions. J. Math. Anal. Appl. 496, 124794 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Zhang, G., Chen, S.Y., Yan, Z.Y.: Focusing and defocusing Hirota equations with non-zero boundary conditions: inverse scattering transforms and soliton solutions. Commun. Nonlinear Sci. Numer. Simul. 80, 104927 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Zhang, G.Q., Yan, Z.Y.: Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions. Physica D 402, 132170 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Zhang, Z.C., Fan, E.G.: Inverse scattering transform for the Gerdjikov-Ivanov equation with nonzero boundary conditions. Z. Angew. Math. Phys. 71, 149 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Rybalko, Y., Shepelsky, D.: Long-time asymptotics for the integrable nonlocal focusing nonlinear Schrödinger equation for a family of step-kike initial data. Commun. Math. Phys. 382, 87–121 (2021)

    MATH  Google Scholar 

  30. Geng, X.G., Wang, K.D., Chen, M.M.: Long-time asymptotics for the spin-1 Gross-Pitaevskii equation. Commun. Math. Phys. 382, 585–611 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Biondini, G., Lottes, J., Mantzavinos, D.: Inverse scatteringtransform for the focusing nonlinear Schrödinger equation with counterpropagating flows. Stud. Appl. Math. 146, 371–439 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Jaulent, M., Manna, M.: The spatial transform method: partmacr derivation of the AKNS hierarchy. Phys. Lett. A 117, 62–66 (1987)

    Google Scholar 

  33. Jaulent, M., Manna, M.: Connection between the KDV and the AKNS spatial transforms. Inverse Probl. 2, L35–L41 (1986)

    MathSciNet  MATH  Google Scholar 

  34. Jaulent, M., Manna, M.: The spatial transform method for partmacr equations of nth linear order. Inverse Probl. 3, L13–L18 (1987)

    MATH  Google Scholar 

  35. Jaulent, M., Manna, M., Alonso, L.M.: \(\bar{\partial }\) equations in the theory of integrable systems. Inverse Probl. 4, 123–150 (1988)

    MathSciNet  MATH  Google Scholar 

  36. Zakharov, V., Manakov, S.V.: Construction of higher-dimensional nonlinear integrable systems and of their solutions. Funct. Anal. Appl. 19, 89–101 (1985)

    MATH  Google Scholar 

  37. Beals, R., Coifman, R.R.: The D-bar approach to inverse scattering and nonlinear evolutions. Physica D 18, 242–249 (1986)

    MathSciNet  MATH  Google Scholar 

  38. Bogdanov, L.V., Manakov, S.V.: The non-local \(\bar{\partial }\) problem and (2+1)-dimensional soliton equations. J. Phys. A: Math. Gen. 21, L537–L544 (1988)

    MATH  Google Scholar 

  39. Beals, R., Coifman, R.R.: Linear spectral problems, non-linear equations and the \(\bar{\partial }\)-method. Inverse Probl. 5, 87–130 (1989)

    MATH  Google Scholar 

  40. Konopelchenko, B.G.: Solitons in Multidimensions-Inverse Spectral transform Method. Word Scientific, Singapore (1993)

    MATH  Google Scholar 

  41. Dubrovsky, V.G., Konopelchenko, B.G.: The (2+1)-dimensional integrable generalization of the sine-Gordon equation. II. localized solutions. Inverse Probl. 9, 391–416 (1993)

    MathSciNet  MATH  Google Scholar 

  42. Konopelchenko, B.G., Dubrovsky, V.G.: A (2+1)-dimensional integrable generalization of the sine-Gordon equation. i. \(\bar{\partial }\)-\(\partial \)-dressing and the initial value problem. Stud. Appl. Math. 90, 189–223 (1993)

    MathSciNet  MATH  Google Scholar 

  43. Dubrovsky, V.G., Konopelchenko, B.G.: \(\bar{\partial }\)-dressing and exact solutions for the (2+1)-dimensional Harry Dym equation. J. Phys. A: Math. Gen. 27, 4619–4628 (1994)

    MathSciNet  MATH  Google Scholar 

  44. Dubrovsky, V.G.: The application of the \(\bar{\partial }\)-dressing method to some integrable (2+1)-dimensional nonlinear equations. J. Phys. A: Math. Gen. 29, 3617–3630 (1996)

    MathSciNet  Google Scholar 

  45. Dubrovsky, V.G.: The \(\bar{\partial }\)-dressing method and the solutions with constant asymptotic values at infinity of DS-II equation. J. Math. Phys. 38, 6382–6400 (1997)

    MathSciNet  MATH  Google Scholar 

  46. Dubrovsky, V.G.: The construction of exact multiple pole solutions of some (2+1)-dimensional integrable nonlinear evolution equations via the \(\bar{\partial }\)-dressing method. J. Phys. A: Math. Gen. 32, 369–390 (1999)

    MathSciNet  MATH  Google Scholar 

  47. Dubrovsky, V.G., Formusatik, I.B.: The construction of exact rational solutions with constant asymptotic values at infinity of two-dimensional NVN integrable nonlinear evolution equations via the dbar-dressing method. J. Phys. A: Math. Gen. 34, 1837–1852 (2001)

    MATH  Google Scholar 

  48. Wang, X.R., Zhu, J.Y., Qiao, Z.J.: New solutions to the differential-difference KP equation. Appl. Math. Lett. 113, 106836 (2021)

    MathSciNet  MATH  Google Scholar 

  49. Doliwa, A., Manakov, S.V., Santini, P.M.: \(\bar{\partial }\)-reductions of the multidimensional quadrilateral lattice. The multidimensional circular lattice. Commun. Math. Phys. 196, 1–18 (1998)

    MathSciNet  MATH  Google Scholar 

  50. Santini, P.M.: Transformations and reductions of integrable nonlinear equations and the dbar-problem. In: Mason, L., Nutku, Y. (eds.) Geometry and integrability. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  51. Li, Q., Su, S., Li, M.H., Zhang, J.B.: The inverse scattering transform for the differential-difference Kadomtsev-Petviashvili equation. J. Math. Phys. 56, 103507 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Doktorov, E.V., Leble, S.B.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Springer, Amsterdam (2007)

    Google Scholar 

  53. Zhu, J.Y., Geng, X.G.: A hierarchy of coupled evolution equations with self-consistent sources and the dressing method. J. Phys. A: Math. Theor. 46, 035204 (2013)

    MathSciNet  MATH  Google Scholar 

  54. Zhu, J.Y., Geng, X.: The AB equations and the Dbar-dressing method in semi-characteristic coordinates. Math. Phys. Anal. Geo. 17, 49–65 (2014)

    MATH  Google Scholar 

  55. Kuang, Y.H., Zhu, J.Y.: A three-wave interaction model with self-consistent sources: the Dbar-dressing method and solutions. J. Math. Anal. Appl. 426, 783–793 (2015)

    MathSciNet  MATH  Google Scholar 

  56. Kuang, Y.H., Zhu, J.Y.: The higher-order soliton solutions for the coupled Sasa-Satsuma system via the \(\bar{\partial }\)-dressing method. Appl. Math. Lett. 66, 47–53 (2017)

    MathSciNet  MATH  Google Scholar 

  57. Luo, J.H., Fan, E.G.: \(\bar{\partial }\)-dressing method for the coupled Gerdjikov-Ivanov equation. Appl. Math. Lett. 110, 106589 (2020)

    MathSciNet  MATH  Google Scholar 

  58. McLaughlin, K.T.-R., Miller, P.D.: The \(\bar{\partial }\) steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights. Int. Math. Res. Pap. 2006, 1–77 (2006)

    MathSciNet  MATH  Google Scholar 

  59. McLaughlin, K.T.-R., Miller, P.D.: The \(\bar{\partial }\) steepest descent method for orthogonal polynomials on the real line with varying weights. Int. Math. Res. Notices rnn075 (2008)

  60. Yang, Y.L., Fan, E.G.: Long-time asymptotic behavior of the modified schrödinger equation via \(\bar{\partial }\)-steepest descent method, arXiv:1912.10358

  61. Nachman, A.I.: Global uniqueness for a two-dimensional inverse boundary value problem. Ann. Math. Lett. 143, 71–96 (1996)

    MathSciNet  MATH  Google Scholar 

  62. Nachman, A., Regev, I., Tataru, D.: A nonlinear Plancherel theorem with applications to global well-posedness for the defocusing Davey-Stewartson equation and to the inverse boundary value problem of calderón. Int. Math. 220, 395–451 (2020)

    MATH  Google Scholar 

  63. Dubrovsky, V.G., Topovsky, A.V.: Multi-lump solutions of KP equation with integrable boundary via \(\bar{\partial }\)-dressing method. Physica D 414, 132740 (2020)

    MathSciNet  MATH  Google Scholar 

  64. Zakharov, V.E., Gelash, A.A.: Soliton on unstable condensate, arXiv:1109.0620

  65. Faddeev, L.D., Takhtajan, L.A.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin (1987)

    MATH  Google Scholar 

  66. Huang, N.: Theory of Solitons and Method of Perturbations. SSTEPH, Shanghai (1996). ((In Chinese))

    Google Scholar 

  67. Han, J.W., Yu, J., He, J.S.: Determinant representation of n-times Darboux transformation for the defocusing nonlinear Schrödinger equation. Modern. Phys. Lett. B 27, 1350216 (2013)

    MathSciNet  Google Scholar 

  68. Zhu, J.Y., Jiang, X.L., Wang, X.R.: Dbar dressing method to nonlinear Schrödinger equation with nonzero boundary conditions, arXiv:2011.09028

  69. Luo, J.H., Fan, E.G.: Dbar-dressing method for the Gerdjikov-Ivanov equation with nonzero boundary conditions. Appl. Math. Lett. 120, 107297 (2021)

    MathSciNet  MATH  Google Scholar 

  70. Huang, Y.H., Di, J.J., Yao, Y.Q.: Dbar-dressing methods to nonlinear defocusing Hirota equation with nonzero boundary conditions. Res. Square (2022). https://doi.org/10.21203/rs.3.rs-1701571/v1

    Article  Google Scholar 

  71. Wang, X.R.: Some Applications of Dbar Problem in Nonlocal Integrable Equations, Doctor Dissertation (2022)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of PR China [Grant Numbers 11471295, 11971442].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyi Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 1

Suppose C is a simple closed contour in D and encloses the circle \(\Gamma _\varepsilon \). For all z in the region with boundary C, and admitting \(|z-z_0|>\varepsilon \), we have

$$\begin{aligned} \frac{1}{2\pi i}\int _C\frac{f(k)}{k-z}\textrm{d} k=f(z)+\frac{1}{(m-1)!}\lim \limits _{k\rightarrow z_0}\frac{\textrm{d}^{m-1}}{\textrm{d} k^{m-1}}\frac{f(k)(k-z_0)^m}{k-z}. \end{aligned}$$
(A.1)

Since \(z_0\) is a mth-order pole of f, and \(0<|k-z_0|<\varepsilon \), then

$$\begin{aligned} (k-z_0)^mf(k)=\sum \limits _{j=0}^{m-1} a_{j}(k-z_0)^{j}+\sum \limits _{j=m}^\infty \tilde{a}_{j-m}(k-z_0)^{j}. \end{aligned}$$

In addition, for \(|z-z_0|>\varepsilon \), we have

$$\begin{aligned} \frac{1}{k-z}=\frac{-1}{z-z_0}\frac{1}{1-\frac{k-z_0}{z-z_0}} =-\sum \limits _{l=0}^\infty \frac{(k-z_0)^l}{(z-z_0)^{l+1}},\quad 0<|k-z_0|<\varepsilon . \end{aligned}$$

Thus,

$$\begin{aligned} \frac{1}{(m-1)!}\lim \limits _{k\rightarrow z_0}\frac{\textrm{d}^{m-1}}{\textrm{d} k^{m-1}}\frac{f(k)(k-z_0)^m}{k-z} =-\sum \limits _{j=1}^{m}\frac{a_{m-j}}{(z-z_0)^{j}}. \end{aligned}$$
(A.2)

Substituting (A.2) into (A.1) implies that

$$\begin{aligned} \frac{1}{2\pi i}\int _C\frac{f(k)}{k-z}\textrm{d} k=f(z)-\sum \limits _{j=1}^{m}\frac{a_{m-j}}{(z-z_0)^{j}}. \end{aligned}$$
(A.3)

On the other hand, for the region with boundary C and \(\Gamma _\varepsilon \), we apply the Cauchy’s formula and find

$$\begin{aligned} f(z)=\frac{1}{2\pi i}\int _{C+\Gamma _\varepsilon ^-}\frac{f(k)}{k-z}\textrm{d} k=\frac{1}{2\pi i}\int _C\frac{f(k)}{k-z}\textrm{d} k+\frac{1}{2\pi i}\int _{\Gamma _\varepsilon ^-}\frac{f(k)}{k-z}\textrm{d} k. \end{aligned}$$
(A.4)

The Lemma 1 is proved by comparing equations (A.3) and (A.4). It is noted that

$$\begin{aligned} \int _{\Gamma _\varepsilon ^-}\frac{f(k)}{k-z}\textrm{d} k=\lim \limits _{\varepsilon \rightarrow 0}\int _{\Gamma _\varepsilon ^-}\frac{f(k)}{k-z}\textrm{d} k. \end{aligned}$$

Proof of Lemma 2

To consider the contour integral on the circle \(\Gamma _r=\{k:|k|=r, \epsilon<r<R\}\), we let \(z=\zeta ^{-1}\) and make the transformation \(k=\mu ^{-1}, f(\mu ^{-1})=g(\mu )\). Then the circle \(\Gamma _r\) is transformed to the circle \(C=\{\mu :|\mu |=r^{-1}\}\). Noting the direction of the contours will change after the transformation, we have

$$\begin{aligned} \frac{1}{2\pi i}\oint _{\Gamma _r^-}\frac{f(k)}{k-z }\textrm{d}k=\frac{\zeta }{2\pi i}\oint _C\frac{g(\mu )}{\mu (\mu -\zeta )}\textrm{d}\mu . \end{aligned}$$
(A.5)

Since \(0<|\zeta |<r^{-1}\) and

$$\begin{aligned} g(\mu )=\sum \limits _{j=0}^n\frac{b_j}{\mu ^j}+O(\mu ), \quad \mu \rightarrow 0, \end{aligned}$$

then

$$\begin{aligned} \frac{1}{2\pi i}\oint _C\frac{g(\mu )}{\mu (\mu -\zeta )}\textrm{d}\mu =\frac{g(\zeta )}{\zeta }+\frac{1}{n!}\lim \limits _{\mu \rightarrow 0}\frac{\textrm{d}^n}{\textrm{d}\mu ^n}\bigg [\frac{g(\mu )\mu ^n}{\mu -\zeta }\bigg ]. \end{aligned}$$
(A.6)

For fixed \(\zeta \), we know that

$$\begin{aligned} \frac{g(\mu )\mu ^n}{\mu -\zeta }=-\sum \limits _{l=0}^n\bigg (\sum \limits _{j=0}^l\frac{b_{n-l+j}}{\zeta ^{j+1}}\bigg )\mu ^l+O(\mu ^{n+1}), \quad \mu \rightarrow 0. \end{aligned}$$
(A.7)

Substituting (A.7) into (A.6), we find

$$\begin{aligned} \frac{1}{2\pi i}\oint _C\frac{g(\mu )}{\mu (\mu -\zeta )}\textrm{d}\mu =\frac{g(\zeta )}{\zeta }-\sum \limits _{j=0}^n\frac{b_{j}}{\zeta ^{j+1}}. \end{aligned}$$
(A.8)

Then, from (A.8) and (A.5), we have

$$\begin{aligned} \frac{1}{2\pi i}\oint _{\Gamma _r^-}\frac{f(k)}{k-z }\textrm{d}k=f(z)-\sum \limits _{j=0}^nb_jz^j. \end{aligned}$$
(A.9)

On the other hand, in the annulus \(r<|z|<R\), the Cauchy’s formula implies that

$$\begin{aligned} f(z)=\frac{1}{2\pi i}\oint _{\Gamma _R}\frac{f(k)}{k-z }\textrm{d}k+\frac{1}{2\pi i}\oint _{\Gamma _r^-}\frac{f(k)}{k-z }\textrm{d}k. \end{aligned}$$
(A.10)

Lemma 2 is proved by comparing (A.9) and (A.10).

Lemmas 1 and  2 give the proof the Lemma 3 in the Introduction.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Jiang, X. & Wang, X. Nonlinear Schrödinger equation with nonzero boundary conditions revisited: Dbar approach. Anal.Math.Phys. 13, 51 (2023). https://doi.org/10.1007/s13324-023-00816-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-023-00816-8

Keywords

Navigation