Skip to main content
Log in

Fischer decompositions for entire functions and the Dirichlet problem for parabolas

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \(P_{2k}\) be a homogeneous polynomial of degree 2k and assume that there exist \(C>0\), \(D>0\) and \(\alpha \ge 0\) such that

$$\begin{aligned} \left\langle P_{2k}f_{m},f_{m}\right\rangle _{L^2(\mathbb {S}^{d-1})}\ge \frac{1}{C\left( m+D\right) ^{\alpha }}\left\langle f_{m},f_{m}\right\rangle _{\mathbb {S}^{d-1}} \end{aligned}$$

for all homogeneous polynomials \(f_{m}\) of degree m. Assume that \(P_{j}\) for \(j=0, \dots ,\beta <2k\) are homogeneous polynomials of degree j. The main result of the paper states that for any entire function f of order \( \rho <\left( 2k-\beta \right) /\alpha \) there exist entire functions q and h of order bounded by \(\rho \) such that

$$\begin{aligned} f=\left( P_{2k}-P_{\beta }- \dots -P_{0}\right) q+h\text { and }\Delta ^k r=0. \end{aligned}$$

This result is used to establish the existence of entire harmonic solutions of the Dirichlet problem for parabola-shaped domains on the plane, with data given by entire functions of order smaller than \(\frac{1}{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article since no data sets were generated or analyzed.

Notes

  1. E. Fischer made important contributions to the development of abstract Hilbert spaces (e.g. the Riesz-Fischer theorem), so, not surprisingly, Hilbert space arguments play an important role in his paper. See [29], p. 217 and p. 228, for some biographical comments and remarks.

References

  1. Andrews, G.E., Askey, R., Roj, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Armitage, D.H., Gardiner, S.J.: Classical Potential Theory. Springer, London (2001)

    MATH  Google Scholar 

  3. Armitage, D.: The Dirichlet problem when the boundary function is entire. J. Math. Anal. 291, 565–577 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Springer, New York (1992)

    MATH  Google Scholar 

  5. Axler, S., Gorkin, P., Voss, K.: The Dirichlet problem on quadratic surfaces. Math. Comp. 73, 637–651 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Axler, S., Ramey, W.: Harmonic polynomials and Dirichlet-type problems. Proc. Am. Math. Soc. 123, 3765–3773 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Baker, J.A.: The Dirichlet problem for ellipsoids. Am. Math. Mon. 106, 829–834 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Beauzamy, B.: Extremal products in Bombieri’s norm. Rend. Istit. Mat. Univ. Trieste Suppl. XXVIII, 73–89 (1997)

    MATH  Google Scholar 

  9. Brackx, F., De Schepper, H., Souček, V.: Fischer decompositions in Euclidean and Hermitean Clifford analysis, Archivum Mathematicum (BRNO). Tomus 46, 301–321 (2010)

    MATH  Google Scholar 

  10. Chamberland, M., Siegel, D.: Polynomial solutions to Dirichlet problems. Proc. Am. Math. Soc. 129, 211–217 (2001)

    MathSciNet  MATH  Google Scholar 

  11. de Boor, C., Ron, A.: The least solution for the polynomial interpolation problem. Math. Z. 210, 347–378 (1992)

    MathSciNet  MATH  Google Scholar 

  12. Durand, W.: On some boundary value problems on a strip in the complex plane. Rep. Math. Phys. 52, 1–23 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Ebenfelt, P.: Singularities encountered by the analytic continuation of solutions to Dirichlet’s problem. Complex Var. Theory Appl. 20, 75–91 (1992)

    MathSciNet  MATH  Google Scholar 

  14. Ebenfelt, P., Shapiro, H.S.: The Cauchy–Kowaleskaya theorem and Generalizations. Commun. Partial Differ. Equ. 20, 939–960 (1995)

    MATH  Google Scholar 

  15. Ebenfelt, P., Shapiro, H.S.: The mixed Cauchy problem for holomorphic partial differential equations. J. D’Anal. Math. 65, 237–295 (1996)

    MATH  Google Scholar 

  16. Ebenfelt, P., Khavinson, D., Shapiro, H.S.: Algebraic Aspects of the Dirichlet problem. Oper. Theory Adv. Appl. 156, 151–172 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Ebenfelt, P., Render, H.: The mixed Cauchy problem with data on singular conics. J. Lond. Math. Soc. 78, 248–266 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Ebenfelt, P., Render, H.: The Goursat problem for a generalized Helmholtz operator in \(R^{2}\). J. D’Anal. Math. 105, 149–168 (2008)

    MATH  Google Scholar 

  19. Elizar’ev, I. N., Napalkov, V.V.: Fischer decomposition for a class of inhomogeneous polynomials. Doklady Math. 85 (2) 196–197 (2012), see also Doklady Akademii Nauk. 443 (2), 156–157 (2021)

  20. Fischer, E.: Über die Differentiationsprozesse der Algebra. J. für Mathematik 148, 1–78 (1917)

    MATH  Google Scholar 

  21. Flatto, L., Newman, D.J., Shapiro, H.S.: The level curves of harmonic functions. Trans. Am. Math. Soc. 123, 425–436 (1966)

    MathSciNet  MATH  Google Scholar 

  22. Fryant, A.: Growth of entire harmonic functions in \( R^{3}\). J. Math. Anal. Appl. 66, 599–605 (1978)

    MathSciNet  MATH  Google Scholar 

  23. Fryant, A., Shankar, H.: Fourier coefficients and growth of harmonic functions. IJMMS 10, 433–452 (1987)

    MathSciNet  MATH  Google Scholar 

  24. Fugard, T.B.: Growth of entire harmonic functions in \( R^{n},\)\(n\ge 2\). J. Math. Anal. Appl. 74, 286–291 (1980)

    MathSciNet  MATH  Google Scholar 

  25. Gardiner, S.J.: The Dirichlet and Neumann problems for harmonic functions in half spaces. J. Lond. Math. Soc. 24(2), 502–512 (1981)

    MathSciNet  MATH  Google Scholar 

  26. Gardiner, S.J.: The Dirichlet problem with non-compact boundary. Math. Z. 213, 163–170 (1993)

    MathSciNet  MATH  Google Scholar 

  27. Gardiner, S.J., Render, H.: Harmonic functions which vanish on a cylindrical surface. J. Math. Anal. Appl. 433, 1870–1882 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Gardiner, S.J., Render, H.: Harmonic functions which vanish on coaxial cylinders. J. Anal. Math. 138, 891–915 (2019)

    MathSciNet  MATH  Google Scholar 

  29. González-Velasco, E.A.: Fourier Analysis and Boundary Value Problems. Academic Press, San Diego (1995)

    MATH  Google Scholar 

  30. Hansen, L., Shapiro, H.S.: Functional equations and harmonic extensions. Complex Var. 24, 121–129 (1994)

    MathSciNet  MATH  Google Scholar 

  31. Khavinson, D.: Cauchy’s problem for harmonic functions with entire data on a sphere. Can. Math. Bull. 40, 60–66 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Khavinson, D.: Harold Seymour Shapiro 1928–2021; life in mathematics in memoriam. Anal. Math. Phys. 12(2), Paper No. 63 (2022)

  33. Khavinson, D., Lundberg, E.: Linear Holomorphic Partial Differential Equations and Classical Potential Theory. American Mathematical Society, Providence (2018)

    MATH  Google Scholar 

  34. Khavinson, D., Shapiro, H.S.: Dirichlet’s problem when the data is an entire function. Bull. Lond. Math. Soc. 24, 456–468 (1992)

    MathSciNet  MATH  Google Scholar 

  35. Khavinson, D., Lundberg, E., Render, H.: Dirichlet’s problem with entire data posed on an ellipsoidal cylinder. Potential Anal. 46, 55–62 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Khavinson, D., Lundberg, E., Render, H.: The Dirichlet problem for the slab with entire data and a difference equation for harmonic functions. Can. Math. Bull. 60, 146–153 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Khavinson, D., Stylianopoulos, N.: Recurrence relations for orthogonal polynomials and algebraicity of solutions of the Dirichlet problem. Springer “Around the Research of Vladimir Maz’ya II, Partial Differential Equations”, pp. 219–228 (2010)

  38. Lundberg, E.: Dirichlet’s problem and complex lightning bolts. Comput. Methods Funct. Theory 9, 111–125 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Lundberg, E., Render, H.: The Khavinson–Shapiro conjecture and polynomial decompositions. J. Math. Anal. Appl. 376, 506–513 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Madych, W.R.: Harmonic functions in slabs and half-spaces. Harmonic analysis and applications. Springer Optim. Appl. 168, 325–359 (2021)

    MATH  Google Scholar 

  41. Meril, A., Struppa, D.: Equivalence of Cauchy problems for entire and exponential type functions. Bull. Math. Soc. 17, 469–473 (1985)

    MathSciNet  MATH  Google Scholar 

  42. Meril, A., Yger, A.: Problèmes de Cauchy globaux. (French) [Global Cauchy problems]. Bull. Soc. Math. France 120, 87–111 (1992)

    MathSciNet  MATH  Google Scholar 

  43. Newman, D.J., Shapiro, H.S.: Certain Hilbert spaces of entire functions. Bull. Am. Math. Soc. 72, 971–977 (1966)

    MathSciNet  MATH  Google Scholar 

  44. Newman, D.J., Shapiro, H.S.: Fischer pairs of entire functions. In: Proceedings of Symposia in Pure Mathematics II, pp. 360–369. American Mathematical Society, Providence, RI (1968)

  45. Putinar, M., Stylianopoulos, N.: Finite-term relations for planar orthogonal polynomials. Complex Anal. Oper. Theory 1, 447–456 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Remmert, R.: Funktionentheorie I. Springer, Berlin (1984)

    MATH  Google Scholar 

  47. Render, H.: Real Bargmann spaces, Fischer decompositions and sets of uniqueness for polyharmonic functions. Duke Math. J. 142, 313–352 (2008)

    MathSciNet  MATH  Google Scholar 

  48. Render, H.: A characterization of the Khavinson–Shapiro conjecture via Fischer operators. Potential Anal. 45, 539–543 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Render, H.: The Khavinson–Shapiro conjecture for domains with a boundary consisting of algebraic hypersurfaces. Complex analysis and dynamical systems VII (American Mathematical Society, Providence, RI). Contemp. Math. 699, 283–290 (2017)

    MATH  Google Scholar 

  50. Sauer, T.: Gröbner Bases, H-Bases and interpolation. Trans. Am. Math. Soc. 353, 2293–2308 (2000)

    MATH  Google Scholar 

  51. Shapiro, H.S.: An algebraic theorem of E. Fischer and the Holomorphic Goursat problem. Bull. Lond. Math. Soc. 21, 513–537 (1989)

    MathSciNet  MATH  Google Scholar 

  52. Siciak, J.: Holomorphic continuation of harmonic functions. Ann. Polon. Math. 29, 67–73 (1974)

    MathSciNet  MATH  Google Scholar 

  53. Widder, D.V.: Functions harmonic in a strip. Proc. Am. Math. 12, 67–72 (1961)

    MathSciNet  MATH  Google Scholar 

  54. Zeilberger, D.: Chu’s identity implies Bombieri’s 1990 norm-inequality. Am. Math. Mon. 101, 894–896 (1994)

    MATH  Google Scholar 

Download references

Acknowledgements

The second named author was partially supported by Grant PID2019-106870GB-I00 of the MICINN of Spain, by ICMAT Severo Ochoa project CEX2019-000904-S (MICINN), and by the Madrid Government (Comunidad de Madrid - Spain) V PRICIT (Regional Programme of Research and Technological Innovation), 2022-2024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Render.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In memory of Harold Seymour Shapiro (1928-2021).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Render, H., Aldaz, J.M. Fischer decompositions for entire functions and the Dirichlet problem for parabolas. Anal.Math.Phys. 12, 150 (2022). https://doi.org/10.1007/s13324-022-00758-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-022-00758-7

Keywords

Mathematics Subject Classification

Navigation