Skip to main content
Log in

Positive ground state solutions for the Chern–Simons–Schrödinger system

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we investigate the following nonlinear Chern–Simons–Schrödinger system

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+ V(|x|)u+\lambda \left( \int ^\infty _{|x|}\frac{h(s)}{s}u^2(s)ds+\frac{h^2(|x|)}{|x|^2}\right) u=|u|^{p-2}u~~ \text {in}~ {\mathbb {R}}^2,\\ u(x)=u(|x|)\in H^1({\mathbb {R}}^2), \end{array}\right. } \end{aligned}$$

where \(\lambda >0\), the Chern–Simons term \(h(s)=\int _0^s\frac{r}{2}u^2(r)dr=\frac{1}{4\pi }\int _{B_s}u^2(x)dx\) and V(|x|) is an external potential. Under some suitable conditions on the external potential, we prove the existence of a positive ground state solution for \(p\in (6,+\infty )\) via the Pohožaev–Nehari manifold method and the global compactness lemma. The novelty of this works with respect to some recent results is that we establish a key lemma which is analogous to the Br\(\acute{e}\)zis–Lieb convergence lemma. Furthermore, we also prove concentration of these ground state solutions. As its supplementary results, we give the several nonexistence results of nontrivial solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  2. Byeon, J., Huh, H., Seok, J.: Standing waves of nonlinear Schrödinger equations with the gauge field. J. Funct. Anal. 263, 1575–1608 (2012)

    Article  MathSciNet  Google Scholar 

  3. Byeon, J., Huh, H., Seok, J.: On standing waves with a vortex point of order N for the nonlinear Chern–Simons–Schrödinger equations. J. Differ. Equ. (2016). https://doi.org/10.1016/j.jde.2016.04.004

    Article  MATH  Google Scholar 

  4. Chen, Z., Tang, X., Zhang, J.: Sign-changing multi-bump solutions for the Chern–Simons–Schrödinger equations in \({\mathbb{R}}^2\). Adv. Nonlinear Anal. 9, 1066–1091 (2020)

    Article  MathSciNet  Google Scholar 

  5. Cunha, P., d’Avenia, P., Pomponio, A., Siciliano, G.: A multiplicity result for Chern–Simons–Schrödinger equation with a general nonlinearity. Nonlinear Differ. Equ. Appl. 22, 1831–1850 (2015)

    Article  Google Scholar 

  6. DAvenia, P., Pomponio, A., Watanabe, T.: Standing waves of modified Schrödinger equations coupled with the Chern–Simons gauge theory. Proc. A Roy. Soc. Edin. 150, 1915–1936 (2020)

    Article  Google Scholar 

  7. Huh, H.: Blow-up solutions of the Chern–Simons–Schrödinger equations. Nonlinearity 22, 967–974 (2009)

    Article  MathSciNet  Google Scholar 

  8. Huh, H.: Standing waves of the Schrödinger equation coupled with the Chern–Simons gauge field. J. Math. Phys. 53, 063702 (2012)

    Article  MathSciNet  Google Scholar 

  9. Jackiw, R., Pi, S.Y.: Soliton solutions to the gauged nonlinear Schrödinger equations. Phys. Rev. Lett. 64, 2969–2972 (1990)

    Article  MathSciNet  Google Scholar 

  10. Jackiw, R., Pi, S.Y.: Classical and quantal nonrelativistic Chern–Simons theory. Phys. Rev. D. 42, 3500–3513 (1990)

    Article  MathSciNet  Google Scholar 

  11. Jeanjean, L.: On the existence of bounded Palais–Smale sequence and application to a Landesman–Lazer type problem set on \(\text{ R}^3\). Proc. Roy. Soc. Edinb. Sect. A 129, 787–809 (1999)

    Article  Google Scholar 

  12. Li, G., Ye, H.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \(\text{ R}^3\). J. Differ. Equ. 257, 566–600 (2014)

    Article  Google Scholar 

  13. Li, Y., Li, X., Ma, S.: Groundstates for Kirchhoff-Type equations with Hartree-type nonlinearities. RM 74, 1–26 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Lions, P.: The concentration compactness principle in the calculus of variations: the locally compact case. Part 1. Ann. Inst. H. Poincar Anal. Non Linéaire 1, 109–145 (1984)

    Article  Google Scholar 

  15. Liu, B., Smith, P., Tataru, D.: Local wellposedness of Chern-Simons-Schrödinger. Int. Math. Res. Notices. https://doi.org/10.1093/imrn/rnt161

  16. Liu, Z., Ouyang, Z., Zhang, J.: Existence and multiplicity of sign-changing standing waves for a gauged nonlinear Schrodinger equation in \({\mathbb{R}}^2\). Nonlinearity 32, 3082–3111 (2019)

    Article  MathSciNet  Google Scholar 

  17. Luo, X.: Multiple normalized solutions for a planar gauged nonlinear Schödinger equation. Z. Angew. Math. Phys. 69, 17 (2018)

  18. Pomponio, A., Ruiz, D.: A variational analysis of a gauged nonlinear Schrödinger equation. J. Eur. Math. Soc. 17, 1463–1486 (2015)

    Article  MathSciNet  Google Scholar 

  19. Pomponio, A., Ruiz, D.: Boundary concentration of a gauged nonlinear Schrödinger equation on large balls. Calc. Var. Partial. Differ. Equ. 53, 289–316 (2015)

    Article  Google Scholar 

  20. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  Google Scholar 

  21. Seok, J.: Infinitely many standing waves for the nonlinear Chern–Simons–Schrödinger equations. Adv. Math. Phys. (2015). https://doi.org/10.1155/2015/519374

    Article  MATH  Google Scholar 

  22. Tang, X., Zhang, J., Zhang, W.: Existence and concentration of solutions for the Chern–Simons–Schrödinger system with general nonlinearity. RM 71, 643–655 (2017)

    MATH  Google Scholar 

  23. Tolksdorf, P.: Regularity for some general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984)

    Article  Google Scholar 

  24. Trudinger, N.: On Harnack type inequalities and their applications to quasilinear elliptic equations. Comm. Pure Appl. Math. 20, 721–747 (1967)

  25. Wan, Y.Y., Tan, J.G.: Standing waves for the Chern–Simons–Schrödinger systems without (AR) condition. J. Math. Anal. Appl. 415, 422–434 (2014)

    Article  MathSciNet  Google Scholar 

  26. Wan, Y., Tan, J.: The existence of nontrivial solutions to Chern–Simons–Schrödinger system. Discrete Cont. Dyn. Syst. 37, 2765–2786 (2017)

    Article  Google Scholar 

  27. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  Google Scholar 

  28. Zhang, N., Tang, X., Chen, Z., Qin, L.: Ground state solutions for the Chern–Simons–Schödinger equations with general nonlinearity. Complex Var. Elliptic Equ. https://doi.org/10.1080/17476933.2019.1667337 (2019)

  29. Zhao, L., Zhao, F.: On the existence of solutions for the Schrödinger–Poisson equations. J. Math. Anal. Appl. 346, 155–169 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Both authors are grateful to editor and referees for their critical and helpful comments.

Funding

Research supported by National Natural Science Foundation of China (Grant No. 12071486).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Chen, H. Positive ground state solutions for the Chern–Simons–Schrödinger system. Anal.Math.Phys. 12, 45 (2022). https://doi.org/10.1007/s13324-022-00656-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-022-00656-y

Keywords

Mathematics Subject Classification

Navigation