Skip to main content
Log in

Coupled discrete Sawada–Kotera equations and their explicit quasi-periodic solutions

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we propose a hierarchy of coupled discrete Sawada–Kotera equations associated with a \(3\times 3\) matrix spectral problem. Using the characteristic polynomial of Lax matrix for the hierarchy of coupled discrete Sawada–Kotera equations, we introduce a trigonal curve, a Baker–Akhiezer function and a meromorphic function. We study the asymptotic properties of the Baker–Akhiezer function and the meromorphic function near two infinite points and two zero points on the trigonal curve. The straightening out of various flows is exactly given by means of the Abel map and the meromorphic differential. On the basis of these results and the theory of theory of algebraic curves, we obtain explicit quasi-periodic solutions of the entire coupled discrete Sawada–Kotera hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Ablowitz, M.J., Segur, H.: Solitons And the Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Book  MATH  Google Scholar 

  2. Ablowitz, M.J., Ladik, J.F.: Nonlinear differential-difference equations. J. Math. Phys. 16, 598–603 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belov, A.A., Chaltikian, K.D.: Lattice analogs of W-algebras and classical integrable equations. Phys. Lett. B 309, 268–274 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bogoyavlensky, O.I.: Integrable discretizations of the KdV equation. Phys. Lett. A 134, 34–38 (1988)

    Article  MathSciNet  Google Scholar 

  5. Blaszak, M., Marciniak, K.: R-matrix approach to lattice integrable systems. J. Math. Phys. 35, 4661–4682 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Flaschka, H.: On the Toda lattice II: Inverse scattering solution. Progr. Theor. Phys. 51, 703–716 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hikami, K., Inoue, R., Komori, Y.: Crystallization of the Bogoyavlensky lattice. J. Phys. Soc. Jpn. 68, 2234–2240 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Suris, Y.B.: Integrable discretizations for lattice system: Local equations of motion and their Hamiltonian properties. Rev. Math. Phys. 11, 727–822 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Geng, X.G., Dai, H.H., Cao, C.W.: Algebro-geometric constructions of the discrete Ablowitz-Ladik flows and applications. J. Math. Phys. 44, 4573–4588 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sahadevan, R., Khousalya, S.: Belov-Chaltikian and Blaszak-Marciniak lattice equations: Recursion operators and factorization. J. Math. Phys. 44, 882–898 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tsujimoto, S., Hirota, R.: Pfaffian representation of solutions to the discrete BKP hierarchy in bilinear form. J. Phys. Soc. Jpn. 65, 2797–2806 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Adler, V.E., Postnikov, V.V.: Differential-difference equations associated with the fractional Lax operators. J. Phys. A: Math. Theor. 44, 415203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sawada, K., Kotera, T.: A method for finding \(N\)-soliton solutions of the KdV equation and KdV-like equations. Progr. Theor. Phys. 51, 1355–1367 (1974)

    Article  MATH  Google Scholar 

  14. Hu, X.B., Clarkson, P.A., Bullough, R.: New integrable differential-difference systems. J. Phys. A: Math. Gen. 30, L669-676 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zemlyanukhin, A., Bochkarev, A.: Exact solutions and numerical simulation of the discrete Sawada-Kotera equation. Symmetry 12, 131 (2020)

    Article  Google Scholar 

  16. Novikov, S.P.: The periodic problem for the Korteweg-de Vries equation. Funct. Anal. Appl. 8, 236–246 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krichever, I.M.: Integration of nonlinear equations by the methods of algebraic geometry. Funct. Anal. Appl. 11, 12–26 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dubrovin, B.A.: Inverse problem for periodic finite-zoned potentials in the theory of scattering. Funct. Anal. Appl. 9, 61–62 (1975)

    Article  MATH  Google Scholar 

  19. Its, A.R., Matveev, V.B.: Schrödinger operators with finite-gap spectrum and \(N\)-soliton solutions of the Korteweg-de Vries equation. Theor. Math. Phys. 23, 343–355 (1975)

    Article  Google Scholar 

  20. McKean, H.P., van Moerbeke, P.: The spectrum of Hill’s equation. Invent. Math. 30, 217–274 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lax, P.D.: Periodic solutions of the KdV problem. Comm. Pure. Appl. Math. 28, 141–188 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Date, E., Tanaka, S.: Periodic multi-soliton solutions of Korteweg-de Vries equation and Toda lattice. Progr. Theor. Phys. Suppl. 59, 107–125 (1976)

    Article  MathSciNet  Google Scholar 

  23. Ma, Y.C., Ablowitz, M.J.: The periodic cubic Schrödinger equation. Stud. Appl. Math. 65, 113–158 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Previato, E.: Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation. Duke Math. J. 52, 329–377 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Miller, P.D., Ercolani, N.M., Krichever, I.M., Levermore, C.D.: Finite genus solutions to the Ablowitz-Ladik equations. Comm. Pure. Appl. Math. 48, 1369–1440 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bulla, W., Gesztesy, F., Holden, H., Teschl, G.: Algebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac-van Moerbeke hierarchies. Mem. Am. Math. Soc. 135, 1–79 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Gesztesy, F., Ratneseelan, R.: An alternative approach to algebro-geometric solutions of the AKNS hierarchy. Rev. Math. Phys. 10, 345–391 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Eckhardt, J., Gesztesy, F., Holden, H., Kostenko, A., Teschl, G.: Real-valued algebro-geometric solutions of the two-component Camassa-Holm hierarchy. Ann. Inst. Fourier (Grenoble) 67, 1185–1230 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dickson, R., Gesztesy, F., Unterkofler, K.: A new approach to the Boussinesq hierarchy. Math. Nachr. 198, 51–108 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dickson, R., Gesztesy, F., Unterkofler, K.: Algebro-geometric solutions of the Boussinesq hierarchy. Rev. Math. Phys. 11, 823–879 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Geng, X.G., Zhai, Y.Y., Dai, H.H.: Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy. Adv. Math. 263, 123–153 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Geng, X.G., Zeng, X.: Application of the trigonal curve to the Blaszak-Marciniak lattice hierarchy. Theor. Math. Phys. 190, 18–42 (2017)

    Article  MATH  Google Scholar 

  33. Geng, X.G., Zeng, X.: Quasi-periodic solutions of the Belov-Chaltikian lattice hierarchy. Rev. Math. Phys. 29, 1750025 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wei, J., Geng, X.G., Zeng, X.: The Riemann theta function solutions for the hierarchy of Bogoyavlensky lattices. Trans. Am. Math. Soc. 371, 1483–1507 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhai, Y.Y., Geng, X.G., Xue, B.: Riemann theta function solutions to the coupled long wave-short wave resonance equations. Anal. Math. Phys. 10(82), 1–26 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Geng, X.G., Liu, H.: The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation. J. Nonlinear Sci. 28, 739–763 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Geng, X.G., Wang, K.D., Chen, M.M.: Long-time asymptotics for the spin-1 Gross-Pitaevskii equation. Commun. Math. Phys. 382, 585–611 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Geng, X.G., Li, R.M., Xue, B.: A vector general nonlinear Schrödinger equation with \((m+n)\) components. J. Nonlinear Sci. 30, 991–1013 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, R.M., Geng, X.G.: Rogue periodic waves of the sine-Gordon equation. Appl. Math. Lett. 102, 106147 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, R.M., Geng, X.G.: On a vector long wave-short wave-type model. Stud. Appl. Math. 144, 164–184 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Miranda, R.: Algebraic Curves and Riemann Surfaces. American Mathematical Society, Providence, RI (1995)

    Book  MATH  Google Scholar 

  42. Mumford, D.: Tata Lectures on Theta II. Birkhäuser, Boston (1984)

    MATH  Google Scholar 

  43. Deconinck, B., van Hoeij, M.: Computing Riemann matrices of algebraic curves. Phys. D 152–153, 28–46 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1994)

    Book  MATH  Google Scholar 

  45. Gesztesy, F., Holden, H.: Soliton Equations and Their Algebro-Geometric Solutions I. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  46. Geng, X.G., Zeng, X., Wei, J.: The application of the theory of trigonal curves to the discrete coupled nonlinear Schrödinger hierarchy. Ann. Henri Poincaré 20, 2585–2621 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tu, G.Z.: On Liouville integrability of zero-curvature equations and the Yang hierarchy. J. Phys. A: Math. Gen. 22, 2375–2392 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tu, G.Z.: A trace identity and its applications to the theory of discrete integrable systems. J. Phys. A: Math. Gen. 23, 3903–3922 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sanders, J.A., Wang, J.P.: On the integrability of homogeneous scalar evolution equations. J. Differ. Equ. 147, 410–434 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11871440, 11931017, 11901538, 11971441, 11801525).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianguo Geng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The proof of the locality

Appendix: The proof of the locality

Our goal in this appendix is to show that \({\hat{g}}_{j,+}\) and \({\hat{g}}_{j,-}, j\ge 0\) are local functions. In the continuous case [47, 49], the locality means pure differential equations. In the discrete case [48], we call a function \(f(n)=f(v, w)\) is a local function, if f involves only a finite number of \(E^kw, E^lv, k, l\in {\mathbb {Z}}\). In [47, 48], a unified method was proposed to prove the local property for \(2\times 2\) matrix cases. According to the idea of Ref. [48], it is first proved that \({\hat{g}}_{j,+}, j\ge 0\) are local functions.

For simplicity, we shall use \(a_{j}, b_{j}, c_{j}, d_{j}\) instead of \({\hat{a}}_{j,+}, {\hat{b}}_{j,+}, {\hat{c}}_{j,+}, {\hat{d}}_{j,+}\). Noticing the assumption of \(\Delta \Delta ^{-1}=\Delta ^{-1}\Delta =1\), Eq. (2.10) is equivalent to

$$\begin{aligned}&wa_{j} + Ec_{j} + (E+1)d_{j+1} = 0, \end{aligned}$$
(A.1)
$$\begin{aligned}&(E+1)c_{j} + wb_{j+1} + d_{j+1} = 0, \end{aligned}$$
(A.2)
$$\begin{aligned}&(wE^{-1} - Ew)a_{j+1} + (E^2v - vE^{-1})b_{j+1} - w\Delta d_{j+1} = 0, \end{aligned}$$
(A.3)
$$\begin{aligned}&(Ev - vE^{-2})a_{j+1} + (vE^{-1}w - wEv)b_{j+1} - w\Delta c_{j+1} = 0. \end{aligned}$$
(A.4)

Following [34], the explicit expression of \((E+1)^{-1}f(n)\) is given by

$$\begin{aligned} (E+1)^{-1} f(n)={\left\{ \begin{array}{ll} (-1)^{n-n_{0}} \alpha -\sum \limits _{n^{\prime }=n_{0}}^{n-1}(-1)^{n-n^{\prime }} f\left( n^{\prime }\right) , &{} n \ge n_{0}+1, \\ \alpha , &{} n=n_{0}, \\ (-1)^{n-n_{0}} \alpha +\sum \limits _{n^{\prime }=n}^{n_{0}-1}(-1)^{n-n^{\prime }} f\left( n^{\prime }\right) , &{} n \le n_{0}-1, \end{array}\right. } \end{aligned}$$
(A.5)

where \(\alpha = (E+1)^{-1}f(n)|_{n=n_0}\). For some fixed integer \(n_0\), \(d_{j+1}(n_0)=\delta _{j+1}\) is a constant. Then from (A.1) we have

$$\begin{aligned} d_{j+1}(n) = {\left\{ \begin{array}{ll} (-1)^{n-n_{0}} \delta _{j+1} + \sum \limits _{n^{\prime }=n_{0}}^{n-1}(-1)^{n-n^{\prime }} (w(n^\prime )a_{j}(n^\prime ) + c_{j}(n^\prime +1)), &{} n> n_0, \\ \delta _{j+1}, &{} n=n_0, \\ (-1)^{n-n_{0}} \delta _{j+1} - \sum \limits _{n^{\prime }=n}^{n_0-1}(-1)^{n-n^{\prime }} (w(n^\prime )a_{j}(n^\prime ) + c_{j}(n^\prime +1)), &{} n< n_0. \end{array}\right. } \end{aligned}$$
(A.6)

Eqs. (A.6) and (A.2) mean that \(b_{j+1}\) and \(d_{j+1}\) are polynomials of \(a_{j}, c_{j}\) and their translations.

Next, we prove that \(a_{j+1}\) and \(c_{j+1}\) are polynomials of \(b_{j+1}, d_{j+1}, a_{j}, b_{j}, c_{j}, d_{j}, \cdots \) and their translations.

Proposition A.1

Assume \(v(n, t)\ne 0, \text {for all }(n, t)\in {\mathbb {Z}}\times {\mathbb {R}}\). Suppose that the Lax matrix V satisfies (2.3). Then the traces \(\text {tr}V^k\) of V, \(k\ge 1\), are independent of n.

Proof

Noting \(v\ne 0\) implies that \(\det U\ne 0\). Then using (2.3), it is easy to see that

$$\begin{aligned} E\text {tr}V^k = \text {tr}(UVU^{-1})^k = \text {tr}V^k,\ k\in {\mathbb {N}}, \end{aligned}$$
(A.7)

in terms of \(\text {tr}(AB)=\text {tr}(BA)\), which shows that \(\text {tr}V^k\) is independent of n. \(\square \)

From (2.3), (2.5), (2.9) and (2.14), we arrive at

$$\begin{aligned} \begin{aligned} \text {tr}V^2=&\lambda ^2\big [\Delta _1 d^2+E^{-1}(wb+d)^2\big ] + 2\lambda \big [ \Delta _1 c ^{-} d ^{-} + w^- b^- c^- + a ^{-}(v ^{+} b ^{+} - w a )\\&+ v(a b ^{-} + a ^{--}b - w ^{-} b ^{-} b) + (w a + c ^{+})d ^{+} \big ] + \Delta _1 (c^-)^2 + (wa+c^+)^2\\ =&\sum _{m\ge 0}C_{m}\lambda ^{-m}, \end{aligned} \end{aligned}$$
(A.8)

where the constant \(C_m\) given by

$$\begin{aligned} \begin{aligned} C_m=&\sum ^{m+2}_{\begin{array}{c} i,j\ge 0,\\ i+j=m+2 \end{array}}\big [\Delta _1 d_{i}d_{j}+E^{-1}(wb_{i}+d_{i})(wb_{j}+d_{j})\big ] + 2\sum ^{m+1}_{\begin{array}{c} i,j\ge 0,\\ i+j=m+1 \end{array}}\big [ \Delta _1 c ^{-}_{i} d ^{-}_{j} + w^- b^-_{i} c^-_{j} \\&+ a ^{-}_{i}(v ^{+} b ^{+}_{j} - w a_{j} )+ v(a_{i} b ^{-}_{j} + a ^{--}_{i}b_{j} - w ^{-} b ^{-}_{i} b_{j}) + (w a_{i} + c ^{+}_{i})d^{+}_{j} \big ] \\&+ \sum ^{m}_{\begin{array}{c} i,j\ge 0,\\ i+j=m \end{array}}\big [\Delta _1 c^-_{i}c^-_{j} + (wa_{i}+c^+_{i})(wa_{j}+c^+_{j}) \big ]\\ =&\sum ^{m+2}_{\begin{array}{c} i,j\ge 1,\\ i+j=m+2 \end{array}}\big [\Delta _1 d_{i}d_{j}+E^{-1}(wb_{i}+d_{i})(wb_{j}+d_{j})\big ] + 2\sum ^{m+1}_{\begin{array}{c} i,j\ge 1,\\ i+j=m+1 \end{array}}\big [ \Delta _1 c ^{-}_{i} d ^{-}_{j} + w^- b^-_{i} c^-_{j}\\&+ a ^{-}_{i}(v ^{+} b ^{+}_{j} - w a_{j} )+ v(a_{i} b ^{-}_{j} + a ^{--}_{i}b_{j} - w ^{-} b ^{-}_{i} b_{j}) + (w a_{i} + c ^{+}_{i})d^{+}_{j} \big ] \\&+ \sum ^{m}_{\begin{array}{c} i,j=0,\\ i+j=m \end{array}}\big [\Delta _1 c^-_{i}c^-_{j} + (wa_{i}+c^+_{i})(wa_{j}+c^+_{j})\big ]\\&+ 2\big [ \Delta _1 c ^{-}_{0} d ^{-}_{m+1} + v ^{+} a ^{-}_{0}b ^{+}_{m+1} + v(a_{0} b ^{-}_{m+1} + a ^{--}_{0}b_{m+1} - b_{m+1}) + (w a_{0} + c ^{+}_{0})d^{+}_{m+1} \big ] \\&+ 2(w^- c^-_{0}b^-_{m+1} - w ^{-}v b_{0} b ^{-}_{m+1}) + 2w^{-1}va_{m+1}^{--} -2c_{m+1}. \end{aligned} \end{aligned}$$
(A.9)

This shows that

$$\begin{aligned} w^{-1}va_{j+1}^{--} -c_{j+1} = f_1( b_{j+1}, d_{j+1}, a_{j}, b_{j}, c_{j}, d_{j}, \cdots ), \end{aligned}$$
(A.10)

where \(f_1\) is a polynomial of \(b_{j+1}, d_{j+1}, a_{j}, b_{j}, c_{j}, d_{j}, \cdots \) and their translations (the same hereinafter). Similarly, through tedious calculations, we obtain from (A.3), (A.4) and \(\text {tr}V^2\) that

$$\begin{aligned} w^{-1}va_{j+1}^{--} + c_{j+1}^- = f_2( b_{j+1}, d_{j+1}, a_{j}, b_{j}, c_{j}, d_{j}, \cdots ). \end{aligned}$$
(A.11)

Combining (A.3), (A.4), (A.10) and (A.11), we have

$$\begin{aligned} \begin{aligned} a_{j+1} =&E^2v^{-1}\Big [(w^+)^{-1}v^+\big ((E^2v - vE^{-1})b_{j+1} - w\Delta d_{j+1}\big ) +{\frac{1}{2}}wE(f_1 + f_2)\\&- (wEv - vE^{-1}w)b_{j+1}\Big ]\\ =&f_3(b_{j+1}, d_{j+1}, a_j, b_j, c_j, d_j, \cdots ), \\ c_{j+1} =&w^{-1}vf_3^{--} - f_1 = f_4(b_{j+1}, d_{j+1}, a_j, b_j, c_j, d_j, \cdots ). \end{aligned} \end{aligned}$$
(A.12)

Finally, we see that \({\hat{a}}_{0,+}\), \( {\hat{b}}_{0,+}\), \( {\hat{c}}_{0,+}\), \( {\hat{d}}_{0,+}\) and \({\hat{a}}_{1,+}\), \( {\hat{b}}_{1,+}\), \( {\hat{c}}_{1,+}\), \( {\hat{d}}_{1,+}\) are local functions. Assume that \({\hat{a}}_{l, +}\), \( {\hat{b}}_{l, +}\), \( {\hat{c}}_{l, +}\), \( {\hat{d}}_{l, +}, 0\le l\le j\) are local functions. Then Eqs. (A.6), (A.2) and (A.12) implies that \({\hat{a}}_{j+1, +}\), \( {\hat{b}}_{j+1, +}\), \( {\hat{c}}_{j+1, +}\), \( {\hat{d}}_{j+1, +}\) are also local functions. By induction, we conclude that \({\hat{g}}_{j, +}=({\hat{a}}_{j,+}, {\hat{b}}_{j,+}, {\hat{c}}_{j,+}, {\hat{d}}_{j,+})^T, j\ge 0\), are local functions. The locality of \({\hat{g}}_{j,-}=({\hat{a}}_{j,-}, {\hat{b}}_{j,-}, {\hat{c}}_{j,-}, {\hat{d}}_{j,-})^T, j\ge 0\) can be proved similarly. In particular, the CDSK equations (2.23) are pure difference differential equations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, M., Geng, X., Wei, J. et al. Coupled discrete Sawada–Kotera equations and their explicit quasi-periodic solutions. Anal.Math.Phys. 11, 140 (2021). https://doi.org/10.1007/s13324-021-00577-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-021-00577-2

Keywords

Mathematics Subject Classification

Navigation