Skip to main content
Log in

Fractional Choquard-Kirchhoff problems with critical nonlinearity and Hardy potential

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the following fractional p-Kirchhoff type problem

$$\begin{aligned} \left\{ \begin{array}{ll} \left( a+b[u]_{s,p}^{p(\theta -1)}\right) (-\Delta )^s_pu = \Big ({\mathcal {I}}_\mu *|u|^q\Big )|u|^{q-2}u+\frac{|u|^{p_{\alpha }^*-2}u}{|x|^\alpha },\ u>0, &{}\text{ in }\ \Omega ,\\ u=0, \ &{} \mathrm{in}\ {\mathbb {R}}^N\backslash \Omega , \end{array} \right. \end{aligned}$$

where \([u]_{s,p}^{p}=\displaystyle \iint _{{\mathbb {R}}^{2N}} \frac{|u(x) - u(y)|^{p}}{|x - y|^{N+ps}}\, dxdy\), \(\Omega \) is a bounded smooth domain of \({\mathbb {R}}^N\) containing 0 with Lipschitz boundary, \((-\Delta )_{p}^{s}\) denotes the fractional p-Laplacian, \(0\le \alpha<ps<N\) with \(s\in (0,1)\), \(p>1\), \(a\ge 0\), \(b>0\), \(1<\theta \le p_\alpha ^*/ p\), \(p_\alpha ^*=\frac{(N-\alpha )p}{N-ps}\) is the fractional critical Hardy-Sobolev exponent, \({\mathcal {I}}_\mu (x)=|x|^{-\mu }\) is the Riesz potential of order \(\mu \in (0,\min \{N,2ps\})\), \(q\in (1, Np/(N-ps))\) satisfies some restrictions. By the concentration-compactness principle and mountain pass theorem, we obtain the existence of a positive weak solution for the above problem as q satisfies suitable ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fröhlich, H.: Theory of electrical breakdown in ionic crystal. Proc. Roy. Soc. Edinburgh Sect. A 160, 230–241 (1937)

    Google Scholar 

  2. Pekar, S.: Untersuchung uber die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    MATH  Google Scholar 

  3. Elgart, A., Schlein, B.: Mean field dynamics of boson stars. Commun. Pure Appl. Math. 60, 500–545 (2007)

    Article  MathSciNet  Google Scholar 

  4. Giulini, D., Großardt, A.: The Schrödinger-Newton equation as a non-relativistic limit of self-gravitating Klein-Gordon and Dirac fields. Classical Quant. Grav. 29, 215010 (2012)

    Article  Google Scholar 

  5. Jones, K.R.W.: Gravitational self-energy as the litmus of reality. Mod. Phys. Lett. A 10(8), 657–668 (1995)

    Article  Google Scholar 

  6. Schunck, F.E., Mielke, E.W.: General relativistic boson stars. Class. Quantum Grav. 20, R301–R356 (2003)

    Article  MathSciNet  Google Scholar 

  7. Penrose, R.: Quantum computation, entanglement and state reduction. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 356, 1927–1939 (1998)

    Article  MathSciNet  Google Scholar 

  8. Penrose, R.: The road to reality. Alfred A. Knopf Inc., New York, A complete guide to the laws of the Universe (2005)

  9. Lieb, E.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93-105 (1976/1977)

  10. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)

    Article  MathSciNet  Google Scholar 

  11. Moroz, V., Van Schaftingen, J.: A guide to the Choquard equation. J. Fixed Point Theor. Appl. 19, 773–813 (2017)

    Article  MathSciNet  Google Scholar 

  12. Cassani, D., Zhang, J.: Choquard-type equations with Hardy-Littlewood-Sobolev upper-critical growth. Adv. Nonlinear Anal. 8, 1184–1212 (2019)

    Article  MathSciNet  Google Scholar 

  13. Mingqi, X., Rădulescu, V., Zhang, B.: A critical fractional Choquard-Kirchhoff problem with magnetic field. Commun. Contemp. Math. 21, 1850004 (2019)

    Article  MathSciNet  Google Scholar 

  14. Seok, J.: Limit profiles and uniqueness of ground states to the nonlinear Choquard equations. Adv. Nonlinear Anal. 8, 1083–1098 (2019)

    Article  MathSciNet  Google Scholar 

  15. Marano, S., Mosconi, S.: Asymptotic for optimizers of the fractional Hardy-Sobolev inequality. Commun. Contemp. Math. 21, 1850028 (2019)

    Article  MathSciNet  Google Scholar 

  16. Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94, 156–170 (2014)

    Article  MathSciNet  Google Scholar 

  17. Autuori, G., Fiscella, A., Pucci, P.: Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal. 125, 699–714 (2015)

    Article  MathSciNet  Google Scholar 

  18. Molica Bisci, G., Rădulescu, V., Servadei, R.: Variational methods for nonlocal fractional equations. Encyclop. Math. Appl. 162, Cambridge University Press, Cambridge, (2016)

  19. Pucci, P., Xiang, M., Zhang, B.: Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional \(p\)-Laplacian in \({{\mathbb{R}}}^N\). Calc. Var. Partial Differ. Equ. 54, 2785–2806 (2015)

    Article  Google Scholar 

  20. Pucci, P., Xiang, M., Zhang, B.: Existence and multiplicity of entire solutions for fractional \(p\)-Kirchhoff equations. Adv. Nonlinear Anal. 5, 27–55 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Wang, L., Cheng, K., Zhang, B.: A uniqueness result for strong singular Kirchhoff-type fractional Laplacian problems. Appl. Math. Opt. 83, 1859–1875 (2021)

    Article  MathSciNet  Google Scholar 

  22. Xiang, M., Zhang, B., Ferrara, M.: Existence of solutions for Kirchhoff type problem involving the non-local fractional \(p\)-Laplacian. J. Math. Anal. Appl. 424, 1021–1041 (2015)

    Article  MathSciNet  Google Scholar 

  23. Xiang, M., Zhang, B., Rădulescu, V.: Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional \(p\)-Laplacian. Nonlinearity 29, 3186–3205 (2016)

    Article  MathSciNet  Google Scholar 

  24. Xiang, M., Zhang, B., Zhang, X.: A nonhomogeneous fractional \(p\)-Kirchhoff type problem involving critical exponent in \({\mathbb{R}}^N\). Adv. Nonlinear Stud. 17, 611–640 (2017)

    Article  MathSciNet  Google Scholar 

  25. Fiscella, A., Pucci, P.: Kirchhoff-Hardy fractional problems with lack of compactness. Adv. Nonlinear Stud. 17, 429–456 (2017)

    Article  MathSciNet  Google Scholar 

  26. Fiscella, A., Pucci, P.: \(p\)-fractional Kirchhoff equations involving critical nonlinearities. Nonlinear Anal. Real World Appl. 35, 350–378 (2017)

    Article  MathSciNet  Google Scholar 

  27. Fiscella, A., Pucci, P., Zhang, B.: \(p\)-fractional Hardy-Schrödinger-Kirchhoff systems with critical nonlinearities. Adv. Nonlinear Anal. 8, 1111–1131 (2019)

    Article  MathSciNet  Google Scholar 

  28. Song, Y., Shi, S.: Existence of infinitely many solutions for degenerate \(p\)-fractional Kirchhoff equations with critical Sobolev-Hardy nonlinearities. Z. Angew. Math. Phys. 68, 68 (2017)

    Article  MathSciNet  Google Scholar 

  29. Song, Y., Shi, S.: On a degenerate \(p\)-fractional Kirchhoff equations with critical Sobolev-Hardy nonlinearities. Mediterr. J. Math. 15, 17 (2018)

    Article  MathSciNet  Google Scholar 

  30. Shen, Z., Gao, F., Yang, M.: Ground states for nonlinear fractional Choquard equations with general nonlinearities. Math. Methods Appl. Sci. 39, 4082–4098 (2016)

    Article  MathSciNet  Google Scholar 

  31. Wang, Y., Yang, Y.: Nonlocal problems with critical Choquard nonlinearities, Preprint

  32. Wu, D.: Existence and stability of standing waves for nonlinear fractional Schrödinger equations with Hartree type nonlinearity. J. Math. Anal. Appl. 411, 530–542 (2014)

    Article  MathSciNet  Google Scholar 

  33. Pucci, P., Xiang, M., Zhang, B.: Existence results for Schrödinger-Choquard-Kirchhoff equations involving the fractional \(p\)-Laplacian. Adv. Calc. Var. 12, 253–275 (2019)

    Article  MathSciNet  Google Scholar 

  34. Chen, W., Mosconi, S., Squassina, M.: Nonlocal problems with critical Hardy nonlinearity. J. Funct. Anal. 275, 3065–3114 (2018)

    Article  MathSciNet  Google Scholar 

  35. Chen, W.: Critical fractional \(p\)-Kirchhoff type problem with a generalized Choquard nonlinearity. J. Math. Phys. 59, 121502 (2018)

    Article  MathSciNet  Google Scholar 

  36. Xiang, M., Zhang, B., Rădulescu, V.: Superlinear Schrödinger-Kirchhoff type problems involving the fractional \(p\)-Laplacian and critical exponent. Adv. Nonlinear Anal. 9, 690–709 (2020)

    Article  MathSciNet  Google Scholar 

  37. Ghoussoub, N., Yuan, C.: Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Am. Math. Soc. 352, 5703–5743 (2000)

    Article  MathSciNet  Google Scholar 

  38. Ambrosetti, A., Rabinowitz, P.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  Google Scholar 

  39. Brasco, L., Mosconi, S., Squassina, M.: Optimal decay of extremal functions for the fractional Sobolev inequality. Calc. Var. Partial Differ. Equ. 55, 1–32 (2016)

    Article  Google Scholar 

  40. Lieb, E., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14. Amer. Math. Soc, Providence, Rhode Island (2001)

    Google Scholar 

  41. Mosconi, S., Squassina, M.: Nonlocal problems at nearly critical growth. Nonlinear Anal. 136, 84–101 (2016)

    Article  MathSciNet  Google Scholar 

  42. D’Avenia, P., Squassina, M.: On fractional Choquard equations. Math. Models Methods Appl. Sci. 25, 1447–1476 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

W. Chen was supported by Fundamental Research Funds for the Central Universities XDJK2020B047. B. Zhang was supported by the National Natural Science Foundation of China (No. 11871199), the Shandong Provincial Natural Science Foundation, PR China (No. ZR2020MA006), and the Cultivation Project of Young and Innovative Talents in Universities of Shandong Province. The research of Vicenţiu D. Rădulescu was supported by a grant of the Romanian Ministry of Research, Innovation and Digitization, CNCS/CCCDI–UEFISCDI, project number PCE 137/2021, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binlin Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Rădulescu, V.D. & Zhang, B. Fractional Choquard-Kirchhoff problems with critical nonlinearity and Hardy potential. Anal.Math.Phys. 11, 132 (2021). https://doi.org/10.1007/s13324-021-00564-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-021-00564-7

Keywords

Mathematics Subject Classification

Navigation