Abstract
We establish sharp inequalities for the Riesz potential and its gradient in \(\mathbb {R}^{n}\) and indicate their usefulness for potential analysis, moment theory and other applications.
Similar content being viewed by others
Avoid common mistakes on your manuscript.
1 Introduction
Given a measurable function f(x) on \(\mathbb {R}^{n}\), its Riesz potential of order \(0\le \alpha <n\) is defined^{Footnote 1} by
where \(d_\omega x\) denotes the ndimensional Lebesgue measure on \(\mathbb {R}^{n}\) normalized by
\(\omega _n:=\pi ^{n/2}/ \varGamma (\frac{n}{2}+1)\) being the ndimensional volume of the unit ball in \(\mathbb {R}^{n}\). Let \(\rho (x)\), \(0\le \rho \le 1\), be a measurable function with compact support in \(\mathbb {R}^{n}\) and let
be the exponential transform of \(\rho \) [9, 10]. Then \(E_\rho (y)\) is the exponential of a Riesz potential of first nonintegrable index (\(\alpha =0\)). If \(\rho =\chi _D\) is a characteristic function of a bounded domain \(D\subset \mathbb {R}^{n}\), Putinar and Gustafsson [9] established that \(E_{\chi _{D}}(x)\) is superharmonic in the complement of D and it tends to zero at smooth points of the boundary \(\partial D\). It has also been conjectured in [9] that in fact a stronger result holds: for any density \(\rho (x)\), the function
is subharmonic everywhere outside \({{\mathrm{supp}}}\rho \). The conjecture has been settled in the affirmative by the author in [23]. A key ingredient in the proof of the subharmonicity was the following sharp inequality.
Theorem 1
(Corollary 2.2. in [23]) For any density function \(0\le \rho (x)\le 1\), \(0\not \in {{\mathrm{supp}}}\rho \), the inequality
holds, where \(\mathscr {M}_n(t)\) is the unique solution of the initial problem
The inequality (2) is sharp and the equality holds when \(\rho (x)\) is the characteristic function of ball B with a center on the \(x_1\)axes and \(0\not \in \overline{B}\).
Inequality (2) is remarkable in many respects. First notice that it implies a sharp gradient estimate for the Newtonian potential
or
for the Newtonian potential
with a bounded density \(\rho \). Since \(\mathscr {M}_n(t)<1\), (5) yields a ‘truncated version’
It is wellknown, see for example Proposition 3.1.7 in [3], that for \(f\in L^p(\mathbb {R}^{n})\), \(1\le p<\infty \), there exists a constant A such that
where
is the HardyLittlewood maximal function of f. As Adams remarks in [2], while the maximal function is an important tool for estimates involving \(L^p\) measures f, it is not a sharp tool for analyzing their pointwise behaviour. Some generalizations involving the HardyLittlewood maximal function for a complex order \(\alpha \in \mathbb {C}\) can be found in [19]. Estimate (6) also appears in the Poisson equation and quasilinear equations, see [20, 21], see also [7]. In fact, a straightforward application of Cauchy’s inequality yields just
which is optimal in the class of arbitrary (not uniformly bounded) nonnegative measurable densities \(\rho \) and the equality is attained asymptotically for a suitable approximation of a \(\delta \)function distribution with a singlepoint support on the \(x_1\)axes.
In this respect, (2) is a considerable refinement of (7) for uniformly bounded densities \(0\le \rho \in L^{\infty }(\mathbb {R}^{n})\). Since \(\mathscr {M}_n<1\) one readily obtains from (2) that for any \(0\le \rho \in L^{\infty }(\mathbb {R}^{n})\) the (truncated) Cauchy inequality holds:
Observe that the sharp inequality (2) has no longer the symmetry of Cauchy’s inequality, see (7). This symmetry breaking can appropriately be explained in the moment problem context. Namely, (2) can be thought as a natural extension of the Markov inequalities in the Lproblem [4, 15] for the critical negative powers. Recall that given \(L>0\), the Lproblem of moments concerns the existence of a density function \(0\le \rho \le L\) with a given sequence of the power moments
where \(I\subset \mathbb {R}^{}\) is an arbitrary fixed (finite or infinite) interval. By a celebrated result of A.A. Markov, the solvability of the Lproblem is equivalent to the solvability of the corresponding classical moment problem for
where \(d\mu (x)\) is a positive measure, and the correspondence is given by the (onedimensional) exponential transform
see [4, p. 72], [15, p. 243], [8] for more details. Setting \(L=1\) and \(I=[0,\infty )\) in (9), the solvability of the corersponding Lmoment problem is equivalent to the solvability of the Stieltjes problem for the sequence \(\{a_k\}_{k\ge 0}\) defined by (10) which is, in its turn, is equivalent to the nonnegativity of the Hankel determinants sequence \(\varDelta _m:=\det (a_{i+j})_{i,j=0}^{m}\ge 0\) and \(\varDelta _m':=\det (a_{i+j+1})_{i,j=0}^{m}\ge 0\), \(m\ge 0\). For example, \(\varDelta '_1\ge 0\) readily yields
Furthermore, the inversion of the variable \(x\rightarrow 1/x\) in (9) implies a correspondence between the negative power moments \(s_m\) for \(m=2,3,\ldots \) and the classical ones:
This implies the classical Markov inequalities for all power moments \(s_m\) except for the critical exponent \(m=1\).
In this respect, in the onedimensional case (2) provides a novel inequality for power Lmoments involving the critical exponent \(s_{1}\). Indeed, in the notation of Theorem 1 one has \(\mathscr {M}_1(t)=\tanh t\) and \(d_\omega x=\frac{1}{2} dx\), hence (2) yields
for any density function \(0\le \rho \le 1\). In the moment notation (12) this yields a sharp inequality
Remark that in contrast to the algebraic character of the classical Markov inequalities [5], (14) has a different, transcentental nature. The analogous twodimensional Lproblem is much less explored, recent works point out some direct applications of this problem to tomography, geophysics, the problem in particular has to do with the distribution of pairs of random variables or the logarithmic potential of a planar domain, see [10,11,12, 16].
2 Main results
In this paper we extend (2) to the Riesz potentials of a general index. Then we have for its gradient
When y is fixed it is natural to assume that \(y=0\), hence after a suitable orthogonal transformation of \(\mathbb {R}^{n}\) the above integrals amount respectively to
with a new density function \(\rho \). We are interested in the gradient estimates, i.e. those involving both \(\mathcal {F}_\alpha \rho \) and \(\mathcal {H}_\alpha \rho \). In this paper, we consider the following variational problem.
Definition 1
Given \(u,v>0\), define
where the supremum is taken over all measurable functions \(0\le \rho \le 1\) with support outside of the origin. We refer to such a \(\rho (x)\) as an admissible density function. A pair \((u,v)\subset \mathbb {R}^{2}_{\ge 0}\) is said to be admissible for the variational problem (16) if there exists an admissible density function \(\rho \) such that \(\mathcal {F}_\alpha \rho =u\) and \(\mathcal {F}_{\alpha 2}\rho =v\).
It is easy to see that \({\mathscr {N}}_\alpha (u,v)\) is welldefined and finite for any \(\alpha \) and any admissible pair (u, v). Indeed, it follows from Cauchy’s inequality that
We point out, however, that the estimate (17) provide a correct approximation only when u and v are infinitesimally small.
Combining (15) with (16) yields the following pointwise gradient estimate on the Riesz potential \(\mathcal {I}_\alpha \rho \) by means of \(\mathcal {I}_\alpha \rho \) itself and the contiguous potential \(\mathcal {I}_{\alpha 2} \rho \).
Proposition 1
In the above notation, the following pointwise estimate holds:
and the inequality is sharp.
Our main result provides an explicit form of the goal function \({\mathscr {N}}_\alpha (u,v)\).
Theorem 2
Let \(n\ge 1\) and \(0<\alpha \le 2\). Then the set of admissible pairs coincides with the nonnegative quadrant \(\mathbb {R}^{2}_{\ge 0}\) and for any \(u,v>0\)
where \(t=t(u,v)\) is uniquely determined by the relation
where
and F([a, b], [c], t) is the Gauss hypergeometric function.
We are in particular interested in the shape structute of the goal function \({\mathscr {N}}_\alpha (u,v)\), i.e. how it depends on the variables u and v. Combining (20) and (19) yields the following alternative representation.
Corollary 1
Under assumptions of Theorem 2,
where \(\psi (s)\) welldefined by the parametric representation
Some further remarks are in order. The condition \(\alpha \le 2\) in Theorem 2 is of a technical character. In the complementary case \(2<\alpha <n\), the set of admissible pairs is a proper subset of the quadrant \(\mathbb {R}^{2}_{\ge 0}\). The corresponding analysis requires some more care, and will be done elsewhere.
The borderline case \(\alpha =2\) corresponds to inequality (2) established in [23] and in the present notation the goal function here becomes
We derive also it as an application of Theorem 2 in Corollary 2 below. Remarkably, that both Cauchy’s inequality estimate (17) and its sharp version (22) separate into onevariable factors. This separable form, however, no longer holds for a general \(\alpha \), when the shape of \({\mathscr {N}}_\alpha \) has a more complicated structure, see (21).
Another interesting case is \(\alpha =1\). Under this condition, the Riesz potentials in the right hand side of (18) have in fact the same exponent because for \(\alpha =1\) the contiguous potential amounts to \(\mathcal {I}_{1} \rho =\mathcal {I}_{1} \widetilde{\rho }\), where \(\widetilde{\rho }\) is the inversion of \(\rho \). A further remarkable feature of this case is that \({\mathscr {N}}_1(u,v)\) becomes a symmetric function of u and v. Indeed, a straightforward analysis of (21) implies that for \(\alpha =1\) the goal function \({\mathscr {N}}_1(u,v)\) depends only on the product uv. More precisely, we have the following
Theorem 3
For any measurable function \(0\le \rho (x)\le 1\), \(0\not \in {{\mathrm{supp}}}\rho \), the sharp inequality holds
where \(\varPhi _n(t)\) is the unique solution of the initial problem
subject to the asymptotic condition
Remark 1
Concerning the definition of the shape function \(\varPhi _n\), we note that the initial problem (24) itself does not determine a unique solution because the initial condition \(\varPhi '_n(0)=1\) is singular. One can prove that if \(\phi (x)\) solves (24) then any solution of (24) is obtained by the homothetic scaling \(\frac{1}{c}\phi (cx)\), \(c>0.\) Note also that all thus obtained solutions have the logarithmic growth at infinity, so a further normalization like (25) is needed.
The proof of Theorem 2 relies on a refinement of the technique initiated in [23] and uses the Bathtub principle. We obtain some preliminary results in Sect. 3 and finish the proof in Sect. 5. Then we prove Theorem 3 in Sect. 7.
Remark also that the obtained gradient estimates are sharp for Euclidean balls with constant density. The latter symmetry phenomenon is natural for the Riesz and Newton potentials [6, 18], and studied recently in connection with Riesz potential integral equations on exterior domains [13, 14, 22, 24].
We finally mention that our results can also be thought of as an analogue of the polynomial moment inequalities for the singular Riesz potential \(d\mu _\alpha (x)=x^{\alpha n}\) in \(\mathbb {R}^{n}\). Then the above functionals are recognized as the lower order polynomial moments:
It is natural to speculate what is the natural extension of the Hankel determinant inequalities for \(d\mu _\alpha \). We pursue this theme elsewhere.
3 Auxiliary identities for spherical integrals
Let us decompose \(\mathbb {R}^{n}=\mathbb {R}^{}\times \mathbb {R}^{n1}\) such that \(x=(x_1,y)\), where \(y=(x_2,\ldots ,x_n)\in \mathbb {R}^{n1}\). Given \(0<\sigma <\tau \), let \(B(\tau ,\sigma )\) denote the open ball of radius \(\sqrt{\tau ^{2}\sigma ^{2}}\) centered at \((\tau ,0)\in \mathbb {R}^{n}\), i.e.
and let \(D(t):=B(t,1)\). We refer to \(B(\tau ,\sigma )\) as an \(x_1\)ball. It is easy to see and will be used later that the inversion \(x\rightarrow x^*=x/x^2\) acts on \(x_1\)balls as follows:
Let us fix some notation:
where
All the introduced functions depend also on the ambient dimension n.
First notice that \(f_\alpha (t)\) and \(h_\alpha (\alpha )\) are real analytic functions of \(t>0\), and for any real \(\alpha \)
Applying Stokes’ formula to
we get the following identity:
Further, applying the inversion readily yields by virtue of (26) that
For the reduced functions this amounts to
Lemma 1
For any \(\alpha \in \mathbb {R}^{}\), the following identities hold:
Proof
Let us consider an axillary function \(\lambda (x)=(x^2+1)/2x_1\). Then \(x_1\nabla \lambda +\lambda e_1=x\), hence
and
Notice that the slevel set \(\{x\in \mathbb {R}^{n}:\lambda (x)=s\}\) is exactly the boundary sphere \(\partial D(s)\), therefore \(\lambda \) foliates the punctured ball \(D(t)\setminus \{(1,0)\}\) into the family of spheres \(\{\partial D(s): 1< s\le t\}\). Applying the coarea formula one obtains from (27) and (36)
where dA is the \((n1)\)dimensional surface measure on \(\partial D(s)\) and \(d_\omega A=\frac{1}{\omega _n} dA\). In particular,
Similarly one finds
Differentiating the obtained identity and applying (37) yields (32).
Next, \(\lambda _{\partial D(s)}=s\), therefore the outward normal vector \(\nu \) along the boundary \(\partial D(s)\) is found from (35) by
thus, using identities
and applying Stoke’s formula we obtain by virtue of (37)
which proves (33). Finally, it follows from (37) that
Then (34) follows from \(f_\alpha (1)=0\) and the previous identity by virtue of l’Hospital’s rule. \(\square \)
Lemma 2
If \(0<\gamma <1\) then for any p, q there holds that
Proof
A straightforward corollary of (27) and the Hölder inequality. \(\square \)
4 The reduced functions via hypergeometric functions
Differentiating the first identity in (31) followed by elimination of \(f_{\alpha 2}\), \(f'_{\alpha 2}\) and \(h_{\alpha }'\) by virtue of (32) and (33) readily yields the following identity:
Setting
the equation (39) is transformed to the hypergeometric differential equation
with
By (34), \(\phi _{\alpha }(1)=1\). Since \(\phi _{\alpha }(z)\) is regular at \(z=1\), it follows from a Kummer transformation (see formula 15.5.5 in [1, p. 563]) that
Using another Kummer transformation (formula 15.5.11 in [1, p. 563]) yields an alternative representation
The latter representation is useful for the asymptotic behavior of \(f_\alpha \) at \(\infty \). From (42) we obtain
In particular, using the Gauss type identity
we have from (43) the following asymptotic growth:
Also, applying a linear transformation (formula 15.3.5 in [1, p. 559]) to (43) yields
A similar argument also works for \(h_\alpha \): eliminating \(f_{\alpha 2}\) from (32) by virtue of (31)\({}_1\) yields
therefore (32) amounts to
The a substitution \(h_\alpha (t)=t(t^21)^{n/2}\psi _\alpha (t^2)\) transforms the latter equation into a hypergeometric one:
with
For the same reasons as above, we obtain
and
Let us consider some particular cases when \(f_\alpha \) can be explicitly specified. When \(n=1\) and \(\alpha \) is arbitrary, one easily finds from (27) that
and \(h_{\alpha }(t)=f_{\alpha 1}(t)\), where
This yields
When \(\alpha =2\), the spherical mean property for harmonic functions \(x^{2n}\) and \(x_1x^{n}\) was used in [23, Sec. 2.2] to obtain explicit expressions
and
Another interesting particular case is \(\alpha =1\), we have by (31)\({}_1\) that \(f_{1}=f_1\), and the reduced functions \(f_1\) and \(h_1\) can be determined explicitly at least when n is an odd integer.
5 Proof of Theorem 2
Step 1. First we assume that \({{\mathrm{supp}}}\rho (x)\subset \mathbb {R}^{n}_{x_1>0}\) and let \({\mathscr {N}}^+_\alpha (u,v)\) denote the corresponding supremum in (16). We claim that for any \(u,v>0\) there exist \(0<\sigma <\tau \) such that
in other words, the pair (u, v) is admissible by a characteristic function of an \(x_1\)centered ball. Indeed, rewrite (55) by virtue of the reduced functions as the system
where \(t=\frac{\tau }{\sigma }\). Consider an auxiliary function
It follows from \(0<\alpha <2\) that g(t) is an increasing function of t and by virtue (34) we have \(\lim _{t\rightarrow 1+0}g(t)=0\). Furthermore, setting \(\gamma =\frac{2\alpha }{2}\), \(p=\alpha \) and \(q=\alpha 2\) in (38) yields under the made assumptions that
hence (28) implies that \(\lim _{t\rightarrow \infty } g(t)=\infty \). Thus, g is a bijection of \([1,\infty )\) onto \([0,\infty )\).
Now, let \(t=t_0\) be the unique solution of \(g(t)=u^{2\alpha }v^{\alpha }\) and let
Then it follows from (56) and (30) that \(\sigma _0\) and \(\tau _0=\sigma _0 t_0\) is a (unique) solution of (55). This proves our claim, and also implies that the set of admissible pairs (u, v) coincides with the nonnegative quadrant \(\mathbb {R}^{2}_{\ge 0}\).
In the introduced notation, let \(\rho _0(x)=\chi _{B(\tau _0,\sigma _0)}(x).\) Then \(\rho _0(x)\) is a test function for (16). Thus, using (27) we find
On the other hand, if \(\rho (x)\) is an arbitrary test function for (16) then by our choice, both \(\rho \) and \(\rho _0\) are test functions in the auxiliary problem
where \(\phi (x)=\frac{x_1}{x^{2}+\sigma _0^2}\) and \(d\mu (x)=(\frac{\sigma _0^2}{x^{n\alpha }}+\frac{1}{x^{n+2\alpha }}) d_\omega x\). In particular, we have
By the ‘Bathtub principle’ [17, p. 28], a solution of the variational problem (59) is given by the characteristic function of a sublevel set \(\{x\in \mathbb {R}^{n}: \phi (x)\le \frac{1}{2\tau }\}\equiv B(\tau ,\sigma _0)\) where \(\tau \) is uniquely determined by the test condition
Since the latter integral is an increasing function of \(\tau \) and since \(\tau _0\) satisfies (60), we conclude that \(\rho _0=\chi _{B(\tau ,\sigma _0)}\) is a maximizer in (59). This yields
Combining the obtained inequalities and using (58) implies
Step 2. We claim that \({\mathscr {N}}^+_\alpha (u,v)\) defined implicitly by (61) is an increasing function of each argument separately. It suffices to verify this for an auxiliary function \(G(u,v)=({\mathscr {N}}^+_\alpha (u,v))^{\alpha /2}\). On eliminating \(\sigma _0\) by virtue of (56) we obtain
where
Using (31) and (32) yields for the logarithmic derivatives
which implies that \(g_1\) and \(g_2\) are increasing functions of t for any \(0<\alpha \le 2\). Now suppose that \(u_1\ge u\) and \(v_1\ge v\). Let \(t_1\) be the unique solution of \(g(t_1)=u_1^{\alpha 2}v_1^\alpha \). Since g(t) in (57) is increasing we conclude that \(t_1\ge t\). First let us consider \(1\le \alpha \le 2\). Then using the first equality in (62) yields
Similarly, if \(0< \alpha \le 1\) then using the second equality in (62) yields
The claim follows.
Step 3. Now suppose that \(\rho \) is an arbitrary density with a compact support not containing the origin. We claim that \({\mathscr {N}}^+_\alpha (u,v)\le {\mathscr {N}}_\alpha (u,v)\). Let \(U_{\pm }\) and \(U_{0}\) denote the classes of densities satisfying respectively the conditions

(a)
\({{\mathrm{supp}}}\rho \cap \mathbb {R}^{n}_{\mp x_1>0}\) has measure zero;

(b)
both \({{\mathrm{supp}}}\rho \cap \mathbb {R}^{n}_{x_1>0}\) and \({{\mathrm{supp}}}\rho \cap \mathbb {R}^{n}_{x_1<0}\) have nonzero measures.
Let \({\mathscr {N}}^{*}_\alpha (u,v)\) denote the supremum in (16) taken over the corresponding class of densities. Then
Let \(x\rightarrow \tilde{x}\) be the reflection about the hyperplane \(x_1=0\). Then \(\widetilde{\rho }(x):=\rho (\tilde{x})\) is a bijection between \(U_+\) and \(U_\). This implies \({\mathscr {N}}^_\alpha (u,v)={\mathscr {N}}^+_\alpha (u,v)\). Let \(\rho \in U^0\) and let \(\rho ^\pm (x)=\chi _{\mathbb {R}^{n}_{\pm x_1>0}}\rho (x)\) such that \(\rho ^\pm (x)\in U^{\pm }\) and \(\rho =\rho ^++\rho ^\) a.e. in \(\mathbb {R}^{n}\). We have
where \(\rho _1\) is one of \(\rho ^+\) and \(\widetilde{\rho ^}\), and \(\mathcal {F}_\alpha \rho _1=u_1\le u\), \(\mathcal {F}_{\alpha 2}\rho _1 =v_1\le v.\) By the monotonicity of \({\mathscr {N}}^+_\alpha \),
implying \({\mathscr {N}}^0_\alpha (u,v)\le {\mathscr {N}}^+_\alpha (u,v)\). This proves our claim and, thus, finishes the proof of the theorem.
6 Some applications
First we demonstrate how Theorem 2 implies Theorem 1. To this end consider \(\alpha =2\).
Corollary 2
where \(\mathscr {M}_n(t)\) is the unique solution of the initial problem (3).
Proof
By (46),
and by (31) \(h_{2}(t)=f_{2}(t)/t\), therefore Theorem 2 yields
where \(t=t(v)\) is uniquely determined by virtue of \(f_{0}(t)=v\). Define
such that
To establish (3), we notice that \(\mathscr {M}_n(0)=0\) and also, using (32), one has from (64)
therefore,
as desired. \(\square \)
7 Proof of Theorem 3
First we assume that dimension \(n\ge 2\) is chosen arbitrarily. Since \(\alpha =1\), we have by the inversion invariance (31) that \(f_{1}(t)=f_1(t),\) which eliminates function \(f_{1}(t)\) from the consideration. Then (32) and (33) amount to
where by virtue of the hypergeometric representations (46) and (50) we have respectively
Furthermore, by the definition \(f_{1}(1)=h_{1}(1)=0\). Also, since \(n\ge 2\), one finds by l’Hospital’s rule from (37) that
Applying Theorem 2 we obtain
Lemma 3
If \(u,v>0\) then the supremum
is given by formula
where \(\varPhi _n(s)\) is welldefined by
Alternatively, \(\varPhi _n(s)\) is the unique solution of the singular initial problem (24)–(25).
Proof
Since \(f_{1}=f_1\), it follows from Theorem 2 that \({\mathscr {N}}_1(u,v)=h_1(t)\), where \(1< t<\infty \) is (uniquely) determined by \(f_1(t)=\sqrt{uv}\), hence
Let us consider the composed function \(\varPhi _n(s)=(h_1\circ f_1^{1})(s)\). Obviously, \(\varPhi _n(s)\) is an increasing function. By the definition, \(\varPhi _n\) is determined by the parametric representation
therefore \(\varPhi _n(0)=0\) and by (45),
Then it follows by l’Hospital’s rule from (65)\({}_1\) that
hence
Further, we find from (65)\({}_1\) that \(\varPhi _n'(s)=h_1'(t)/f_1'(t)=1/t\), hence \( \varPhi _n'(0)=1 \) and applying the chain rule and (65)\({}_2\) yields
This shows that \(\varPhi _n\) verifies the conditions (24)–(25). It follows from the above pearametric representation that a solution of the singular problem (24)–(25) is unique. The lemma follows.
We finish this section by some comments on the particular cases \(n=1\) and \(n=2\). If \(n=1\) then analysis here is straightforward. Using (51), Theorem 2 implies the following new inequality, see (13) and the discussion afterwards.
Corollary 3
For any measurable function \(0\le \rho (x)\le 1\), \(x\in \mathbb {R}^{}\), and \(0\not \in {{\mathrm{supp}}}\rho \), there holds
The inequality is sharp and attained whenever \(\rho (x)\) is a characteristic function of an interval [a, b] with \(ab>0\).
Proof
It follows from (51) that \(f_1(\xi )=\sinh \xi \) and \(h_1(t)=\xi \), where \(t=\cosh \xi \). In particular,
where
\(\square \)
Coming back to the Markov type inequality (14) involving \(s_{1}\), we obtain a further extension: in the notation of (9) we have
Next, note that the case \(n=2\) is special in several respects. First, the derivative \(f_1'(1)=2\) is nonzero by virtue of (68). Furthermore, when \(n=2\), the function \(\varPhi _2\) defined by (24) has some extra symmetries due to \(n1=1\). In this case, the defining functions \(f_1\) and \(h_1\) admit a nice parameterizations by virtue of complete elliptic integrals. We confine ourselves to the following remarkable Taylor expansion at the origin of \(\varPhi _2(z)\):
Notes
The normalization we use is slightly different from the standard normalization [3]
References
Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, vol. 55. For Sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. (1964). http://people.math.sfu.ca/~cbm/aands/frameindex.htm
Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42(4), 765–778 (1975). http://projecteuclid.org/euclid.dmj/1077311348
Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1996). https://doi.org/10.1007/9783662032824
Aheizer, N.I., Krein, M.: Some questions in the theory of moments. Translated by W. Fleming and D. Prill. Translations of Mathematical Monographs, Vol. 2. American Mathematical Society, Providence (1962)
Curto, R.E., Fialkow, L.A.: Truncated \(K\)moment problems in several variables. J. Oper. Theory 54(1), 189–226 (2005)
Fraenkel, L.E.: An Introduction to Maximum Principles and Symmetry in Elliptic Problems, Cambridge Tracts in Mathematics, vol. 128. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/CBO9780511569203
Garg, R., Spector, D.: On the role of Riesz potentials in Poisson’s equation and Sobolev embeddings. Indiana Univ. Math. J. 64(6), 1697–1719 (2015). https://doi.org/10.1512/iumj.2015.64.5706
Gustafsson, B., He, C., Milanfar, P., Putinar, M.: Reconstructing planar domains from their moments. Inverse Prob. 16(4), 1053–1070 (2000). https://doi.org/10.1088/02665611/16/4/312
Gustafsson, B., Putinar, M.: The exponential transform: a renormalized Riesz potential at critical exponent. Indiana Univ. Math. J. 52(3), 527–568 (2003). https://doi.org/10.1512/iumj.2003.52.2304
Gustafsson, B., Putinar, M.: Hyponormal quantization of planar domains: complex orthogonal polynomials and the exponential transform. Lecture Notes in Mathematics, vol. 2199. Springer (2017)
Gustafsson, B., Putinar, M., Saff, E.B., Stylianopoulos, N.: Bergman polynomials on an archipelago: estimates, zeros and shape reconstruction. Adv. Math. 222(4), 1405–1460 (2009). https://doi.org/10.1016/j.aim.2009.06.010
Gustafsson, B., Vasil’ev, A.: Conformal and Potential Analysis in HeleShaw Cells. Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel (2006)
Huang, X.: Symmetry results of positive solutions of integral equations involving Riesz potential in exterior domains and in annular domains. J. Math. Anal. Appl. 427(2), 856–872 (2015). https://doi.org/10.1016/j.jmaa.2015.02.083
Huang, X., Hong, G., Li, D.: Some symmetry results for integral equations involving Wolff potential on bounded domains. Nonlinear Anal. 75(14), 5601–5611 (2012). https://doi.org/10.1016/j.na.2012.05.007
Krein, M.G., Nudel’man, A.A.: The Markov moment problem and extremal problems. American Mathematical Society, Providence, R.I. (1977). Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development, Translated from the Russian by D. Louvish, Translations of Mathematical Monographs, vol. 50 (1977)
Lasserre, J.B.: Bounding the support of a measure from its marginal moments. Proc. Am. Math. Soc. 139(9), 3375–3382 (2011). https://doi.org/10.1090/S000299392011108657
Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001). https://doi.org/10.1090/gsm/014
Maz’ya, V.: Sobolev spaces with applications to elliptic partial differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342, augmented edn. Springer, Heidelberg (2011). https://doi.org/10.1007/9783642155642
Maz’ya, V., Shaposhnikova, T.: On pointwise interpolation inequalities for derivatives. Math. Bohem. 124(2–3), 131–148 (1999)
Mingione, G.: Gradient potential estimates. J. Eur. Math. Soc. (JEMS) 13(2), 459–486 (2011). https://doi.org/10.4171/JEMS/258
Mingione, G.: Recent Advances in Nonlinear Potential Theory Trends in Contemporary Mathematics. Springer INdAM Ser., vol. 8, pp. 277–292. Springer, Cham (2014)
Reichel, W.: Characterization of balls by Rieszpotentials. Ann. Mat. Pura Appl. (4) 188(2), 235–245 (2009). https://doi.org/10.1007/s1023100800736
Tkachev, V.G.: Subharmonicity of higher dimensional exponential transforms. In: Ebenfelt, P., Gustafsson, B., Khavinson, D., Putinar, M. (eds) Quadrature Domains and Their Applications, Oper. Theory Adv. Appl., vol. 156, Birkhäuser, Basel (2005)
Xiao, J.: Entropy flux–electrostatic capacity–graphical mass. Proc. Am. Math. Soc. 145(2), 825–832 (2017). https://doi.org/10.1090/proc/13259
Acknowledgements
The author thank the referee for the valuable comments.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author has no conflict of interest.
Additional information
In memory of Sasha Vasil’ev Friend, Colleague, Mathematician.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Tkachev, V.G. Sharp pointwise gradient estimates for Riesz potentials with a bounded density. Anal.Math.Phys. 8, 711–730 (2018). https://doi.org/10.1007/s133240180230z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s133240180230z
Keywords
 Riesz potentials
 Exponential transform
 Lproblem of moments
 Subharmonic functions
 Cauchy’s inequality
 Symmetry of domains and solutions