Skip to main content
Log in

Inverse problems for second order integral and integro-differential operators

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

Inverse spectral problems are studied for second order integral and integro-differential operators. Uniqueness results are obtained, and algorithms for the solutions are provided along with necessary and sufficient conditions for the solvability of these nonlinear inverse problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marchenko, V.A.: Sturm–Liouville operators and their applications. Naukova Dumka, Kiev, 1977; English transl., Birkhäuser (1986)

  2. Levitan, B.M.: Inverse Sturm–Liouville problems. Nauka, Moscow (1984); English transl., VNU Sci. Press, Utrecht (1987)

  3. Freiling, G., Yurko, V.A.: Inverse Sturm–Liouville Problems and Their Applications. NOVA Science Publishers, New York (2001)

    MATH  Google Scholar 

  4. Beals, R., Deift, P., Tomei, C.: Direct and Inverse Scattering on the Line, Math. Surveys and Monographs, vol. 28. Amer. Math. Soc., Providence (1988)

    Book  MATH  Google Scholar 

  5. Yurko, V.A.: Method of Spectral Mappings in the Inverse Problem Theory. Inverse and Ill-Posed Problems Series. VSP, Utrecht (2002)

    Book  MATH  Google Scholar 

  6. Yurko, V.A.: Inverse Spectral Problems for Differential Operators and Their Applications. Gordon and Breach, Amsterdam (2000)

    Book  MATH  Google Scholar 

  7. Lakshmikantham, V., Rama Mohana Rao, M.: Theory of Integro-Differential Equations. Stability and Control: Theory and Applications, vol. 1. Gordon and Breach, Singapure (1995)

    MATH  Google Scholar 

  8. Yurko, V.A.: An inverse problem for integral operators. Matem. Zametki 37(5), 690–701 (1985) (in Russian); English transl. in Mathematical Notes 37(5–6), 378–385 (1985)

  9. Yurko, V.A.: An inverse problem for integro-differential operators. Matem. Zametki 50(5), 134–146 (1991) (in Russian); English transl. in Math. Notes 50(5–6), 1188–1197 (1991)

  10. Buterin, S.A.: The inverse spectral problem of the reconstruction of a convolution operator perturbed by a one-dimensional operator. Mat. Zametki 80(5), 668–682 (2006) (in Russian); translation in Math. Notes 80(5), 631–644 (2006)

  11. Buterin, S.A.: The inverse problem of recovering the Volterra convolution operator from the incomplete spectrum of its rank-one perturbation. Inverse Prob. 22, 2223–2236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Buterin, S.A.: On an inverse spectral problem for a convolution integro-differential operator. RM 50, 173–181 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Kuryshova, Yu., Shieh, C.-T.: An inverse nodal problem for integro-differential operators. J. Inverse Ill-Posed Problems 18(4), 357–369 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kuryshova, Yu.: An inverse spectral problem for differential operators with integral delay. Tamkang J. Math. 42(3), 295–303 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Buterin, S.A.: On the reconstruction of a convolution perturbation of the Sturm–Liouville operator from the spectrum. Diff. Uravn. 46(1), 146–149 (2010) (in Russian); translation in Diff. Eqns. 46(1), 150–154 (2010)

  16. Wang, Y., Wei, G.: The uniqueness for Sturm–Liouville problems with aftereffect. Acta Math. Sci. 32A(6), 1171–1178 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Buterin, S.A.: On inverse spectral problems for first-order integro-differential operators with discontinuities. Appl. Math. Lett. 78, 65–71 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant 17-11-01193 of the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Buterin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Let the function \(y(x)=S(x,\lambda )\) be the solution of the equation

$$\begin{aligned} y''(x)-q(x)y(x)-\int _0^x B(x,t)y(t)\,dt=\lambda y(x),\quad x\in [0,\pi ], \quad \lambda =-\rho ^2, \end{aligned}$$

under the initial conditions \(S(0,\lambda )=0,\; S'(0,\lambda )=1\). Then \(S(x,\lambda )\) is the solution of the integral equation

$$\begin{aligned} S(x,\lambda )= & {} \frac{\sin \rho x}{\rho }+\int _0^x \frac{\sin \rho (x-\tau )}{\rho } \nonumber \\&\times \Big (q(\tau )S(\tau ,\lambda )+\int _0^\tau B(\tau ,s)S(s,\lambda )\,ds\Big )\,d\tau . \end{aligned}$$
(4.1)

Since

$$\begin{aligned} \frac{\sin \rho (x-\tau )}{\rho }=\int _\tau ^x \cos \rho (t-\tau )\,dt, \end{aligned}$$

then (4.1) can be written as follows:

$$\begin{aligned} S(x,\lambda )= & {} \frac{\sin \rho x}{\rho } \\&+\int _0^x dt \int _0^t\Big (q(\tau )S(\tau ,\lambda )+\int _0^\tau B(\tau ,s)S(s,\lambda )\,ds\Big ) \cos \rho (t-\tau )\,d\tau . \end{aligned}$$

Solving this equation by the method of successive approximations, we get

$$\begin{aligned} S(x,\lambda )= & {} \sum _{n=0}^\infty S_n(x,\lambda ),\quad S_0(x,\lambda )=\frac{\sin \rho x}{\rho }, \\ S_{n+1}(x,\lambda )= & {} \int _0^x dt \int _0^t \Big (q(\tau )S_n(\tau ,\lambda )+\int _0^\tau B(\tau ,s)S_n(s,\lambda )\,ds\Big ) \\&\times \cos \rho (t-\tau )\,d\tau ,\quad n\ge 0, \end{aligned}$$

and consequently,

$$\begin{aligned} S_n(x,\lambda )=\int _0^x K_n(x,\xi )\frac{\sin \rho \xi }{\rho }\,d\xi ,\quad n\ge 1, \end{aligned}$$

where

$$\begin{aligned} K_1(x,\xi )= & {} \frac{1}{2}\int _{0}^{\xi } q(\tau )\,d\tau +\frac{1}{4}\int _{\xi }^{x}\left( q\Big (\frac{t+\xi }{2}\right) -q\Big (\frac{t-\xi }{2}\Big )\Big )\,dt \\&+\,\frac{1}{2}\int _{\xi }^{x}dt \int _{t-\xi }^{t} B(\tau ,\xi -t+\tau )\,d\tau \\&+\,\frac{1}{2}\int _{\xi }^{x}dt \int _{(t+\xi )/2}^{t} B(\tau ,\xi +t-\tau )\,d\tau \\&-\,\frac{1}{2}\int _{\xi }^{x}dt \int _{(t-\xi )/2}^{t-\xi } B(\tau ,t-\tau -\xi )\,d\tau \\ K_{n+1}(x,\xi )= & {} \frac{1}{2}\int _{\xi }^{x}\left( \int _{t-\xi }^{t} q(\tau )K_n(\tau ,\xi +\tau -t)\,d\tau \right. \\&+\,\int _{(t+\xi )/2}^{t} q(\tau )K_n(\tau ,\xi -\tau +t)\,d\tau \\&-\,\int _{(t-\xi )/2}^{t-\xi } q(\tau )K_n(\tau ,-\,\xi -\tau +t)\,d\tau \\&+\,\int _{t-\xi }^{t} d\tau \int _{\xi -t+\tau }^{\tau } B(\tau ,s) K_n(s,\xi +\tau -t)\,ds \\&+\,\int _{(t+\xi )/2}^{t} d\tau \int _{\xi +t-\tau }^{\tau } B(\tau ,s)K_n(s,\xi -\tau +t)\,ds \\&-\,\left. \int _{(t-\xi )/2}^{t-\xi } d\tau \int _{-\xi +t-\tau }^{\tau } B(\tau ,s) K_n(s,-\,\xi -\tau +t)\,ds\right) \,dt. \end{aligned}$$

This yields

$$\begin{aligned} S(x,\lambda )= \frac{\sin \rho x}{\rho }+\int _0^x K(x,\xi )\frac{\sin \rho \xi }{\rho }\,d\xi , \end{aligned}$$

where

$$\begin{aligned} K(x,\xi )=\sum _{n=1}^\infty K_n(x,\xi ),\quad K(x,0)=0, \end{aligned}$$

and the series converges absolutely and uniformly for \(0\le \xi \le x\le \pi \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buterin, S., Yurko, V. Inverse problems for second order integral and integro-differential operators. Anal.Math.Phys. 9, 555–564 (2019). https://doi.org/10.1007/s13324-018-0217-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-018-0217-9

Keywords

Mathematics Subject Classification

Navigation