Skip to main content
Log in

Local optimality of cubic lattices for interaction energies

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the local optimality of simple cubic, body-centred-cubic and face-centred-cubic lattices among Bravais lattices of fixed density for some finite energy per point. Following the work of Ennola (Math Proc Camb 60:855–875, 1964), we prove that these lattices are critical points of all the energies, we write the second derivatives in a simple way and we investigate the local optimality of these lattices for the theta function and the Lennard–Jones-type energies. In particular, we prove the local minimality of the FCC lattice (resp. BCC lattice) for large enough (resp. small enough) values of its scaling parameter and we also prove the fact that the simple cubic lattice is a saddle point of the energy. Furthermore, we prove the local minimality of the FCC and the BCC lattices at high density (with an optimal explicit bound) and its local maximality at low density in the Lennard–Jones-type potential case. We then show the local minimality of FCC and BCC lattices among all the Bravais lattices (without a density constraint). The largest possible open interval of density’s values where the simple cubic lattice is a local minimizer is also computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. But only the Polonium can have this structure in its solid state at ambient temperature.

  2. See (2.2) for more details.

  3. These notations \(\mathbb Z^3, D_3\) and \(D_3^*\) name the shape of the structure.

  4. A function f is completely monotone if, for any \(k\in \mathbb N\) and any \(r>0, f^{(k)}(r)\ge 0\) or, equivalently, if it is the Laplace transform of a positive Borel measure on \(\mathbb R_+\).

References

  1. Baernstein II, A.: A minimum problem for heat kernels of flat tori. Contemp. Math. 201, 227–243 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernstein, S.: Sur les fonctions absolument monotones. Acta Math. 52, 1–66 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bétermin, L.: Local variational study of 2D lattice energies and application to Lennard–Jones type interactions. Preprint. arXiv:1611.07820 (2016)

  4. Bétermin, L.: Two-dimensional theta functions and crystallization among Bravais lattices. SIAM J. Math. Anal. 48(5), 3236–3269 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bétermin, L., Petrache, M.: Dimension reduction techniques for the minimization of theta functions on lattices. J. Math. Phys. 58, 071902 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bétermin, L., Zhang, P.: Minimization of energy per particle among Bravais lattices in \(\mathbb{R}^2\): Lennard–Jones and Thomas–Fermi cases. Commun. Contemp. Math. 17(6), 1450049 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2, 255–306 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Born, M.: On the stability of crystal lattices. I. Math. Proc. Camb. Philos. Soc. 36(2), 160–172 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cassels, J.W.S.: On a problem of Rankin about the Epstein zeta-function. Proc. Glasgow Math. Assoc. 4, 73–80 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cazorla, C., Boronat, J.: Simulation and understanding of atomic and molecular quantum crystals. Rev. Mod. Phys. 89, 035003 (2017)

    Article  MathSciNet  Google Scholar 

  11. Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1), 99–148 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diananda, P.H.: Notes on two lemmas concerning the Epstein zeta-function. Proc. Glasgow Math. Assoc. 6, 202–204 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ennola, V.: A lemma about the Epstein zeta-function. Proc. Glasgow Math. Assoc. 6, 198–201 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ennola, V.: On a problem about the Epstein zeta-function. Math. Proc. Camb. Philos. Soc. 60, 855–875 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  15. Faulhuber, M., Steinerberger, S.: Optimal gabor frame bounds for separable lattices and estimates for Jacobi theta functions. J. Math. Anal. Appl., 445(1), 407–422 (2017)

  16. Flatley, L., Theil, F.: Face-centred cubic crystallization of atomistic configurations. Arch. Rat. Mech. Anal. 219(1), 363–416 (2015)

    Article  MATH  Google Scholar 

  17. Heitmann, R.C., Radin, C.: The ground state for sticky disks. J. Stat. Phys. 22, 281–287 (1980)

    Article  MathSciNet  Google Scholar 

  18. Misra, R.D.: On the stability of crystal lattices. II. Math. Proc. Camb. Philos. Soc. 36(2), 173–182 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  19. Montgomery, H.L.: Minimal theta functions. Glasgow Math. J. 30(1), 75–85 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Radin, C.: The ground state for soft disks. J. Stat. Phys. 26(2), 365–373 (1981)

    Article  MathSciNet  Google Scholar 

  21. Rankin, R.A.: A minimum problem for the Epstein zeta-function. Proc. Glasgow Math. Assoc. 1, 149–158 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sarnak, P., Strömbergsson, A.: Minima of Epstein’s zeta function and heights of flat tori. Invent. Math. 165, 115–151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Süto, A.: Crystalline ground states for classical particles. Phys. Rev. Lett. 95, 265501 (2005)

    Article  Google Scholar 

  24. Süto, A.: Ground state at high density. Commun. Math. Phys. 305, 657–710 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Theil, F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262(1), 209–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Author is grateful for the support of MAThematics Center Heidelberg (MATCH). He also wishes to express his thanks to the anonymous referee for her/his suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Bétermin.

Ethics declarations

Conflicts of interest

The author declares that there is no conflict of interest.

Appendix: General formulas for the second derivatives of \(E_f\)

Appendix: General formulas for the second derivatives of \(E_f\)

We give the formulas for the second derivatives of \(E_f\), for any f and at any Bravais lattice \(L=(u,v,x,y)\) with volume V.

Lemma 7.1

(Second derivatives of the energy) For any \(f\in \mathcal {F}\), any fixed volume \(V>0\) and any \(L=(u,v,x,y)\), we have

$$\begin{aligned} \partial ^2_{uu}E_f[L]&=C^2\sum _{m,n,p}\left( -\frac{(m+xn+yp)^2}{u^2}-\frac{v^2(n+zp)^2}{u^2}+\frac{u}{v^2}p^2 \right) ^2 f''(Q_L)\\&\quad +\,2C\sum _{m,n,p}\left( \frac{(m+xn+yp)^2}{u^3}+\frac{v^2(n+zp)^2}{u^3}+\frac{1}{2v^2}p^2 \right) f'(Q_L),\\ \partial ^2_{vv}E_f[L]&=C^2\sum _{m,n,p}\left( \frac{2v(n+zp)^2}{u}-\frac{u^2}{v^3}p^2 \right) ^2 f''(Q_L)\\&\quad +\,C\sum _{m,n,p}\left( \frac{2(n+zp)^2}{u}+\frac{3u^2}{v^4}p^2 \right) f'(Q_L),\\ \partial _{xx}^2 E_f[L]&=\frac{4C^2}{u^2}\sum _{m,n,p}n^2(m+xn+yp)^2f''(Q_L)+\frac{2C}{u}\sum _{m,n,p}n^2 f'(Q_L),\\ \partial _{yy}^2 E_f[L]&=\frac{4C^2}{u^2}\sum _{m,n,p}p^2(m+xn+yp)^2f''(Q_L)+\frac{2C}{u}\sum _{m,n,p}p^2 f'(Q_L),\\ \partial _{zz}^2 E_f[L]&=\frac{4C^2v^4}{u^2}\sum _{m,n,p}p^2(n+zp)^2f''(Q_L)+\frac{2Cv^2}{u}\sum _{m,n,p}p^2 f'(Q_L),\\ \partial _{uv}^2 E_f[L]&=C^2\sum _{m,n,p}\left( -\frac{(m+xn+yp)^2}{u^2}-\frac{v^2(n+zp)^2}{u^2}+\frac{u}{v^2}p^2 \right) \\&\quad \times \,\left( \frac{2v(n+zp)^2}{u}-\frac{u^2}{v^3}p^2 \right) f''(Q_L)\\&\quad -\,2C\sum _{m,n,p}\left( \frac{v(n+zp)^2}{u^2}+\frac{u}{v^3}p^2 \right) f'(Q_L),\\ \partial _{ux}^2 E_f[L]&=\frac{2C^2}{u}\sum _{m,n,p}n(m+xn+yp)\\&\quad \times \,\left( -\frac{(m+xn+yp)^2}{u^2}-\frac{v^2(n+zp)^2}{u^2}+\frac{u}{v^2}p^2 \right) f''(Q_L)\\&\quad -\,\frac{2C}{u^2}\sum _{m,n,p}n(m+xn+yp)f'(Q_L),\\ \partial _{uy}^2 E_f[L]&=\frac{2C^2}{u}\sum _{m,n,p}p(m+xn+yp)\\&\quad \times \,\left( -\frac{(m+xn+yp)^2}{u^2}-\frac{v^2(n+zp)^2}{u^2}+\frac{u}{v^2}p^2 \right) f''(Q_L)\\&\quad -\frac{2C}{u^2}\sum _{m,n,p}p(m+xn+yp)f'(Q_L),\\ \end{aligned}$$
$$\begin{aligned} \partial _{uz}^2 E_f[L]&=\frac{2C^2v^2}{u}\sum _{m,n,p}p(n+zp)\\&\quad \times \,\left( -\frac{(m+xn+yp)^2}{u^2}-\frac{v^2(n+zp)^2}{u^2}+\frac{u}{v^2}p^2 \right) f''(Q_L)\\&\quad -\,\frac{2Cv^2}{u^2}\sum _{m,n,p}p(n+zp)f'(Q_L),\\ \partial _{vx}^2 E_f[L]&=\frac{2C^2}{u}\sum _{m,n,p}n(m+xn+yp)\left( \frac{2v(n+zp)^2}{u}-\frac{u^2}{v^3}p^2 \right) f''(Q_L),\\ \partial _{vy}^2 E_f[L]&=\frac{2C^2}{u}\sum _{m,n,p}p(m+xn+yp)\left( \frac{2v(n+zp)^2}{u}-\frac{u^2}{v^3}p^2 \right) f''(Q_L),\\ \partial _{vz}^2 E_f[L]&=\frac{2C^2v^2}{u}\sum _{m,n,p}p(n+zp)\left( \frac{2v(n+zp)^2}{u}-\frac{u^2}{v^3}p^2 \right) f''(Q_L)\\&\quad +\,\frac{4Cv}{u}\sum _{m,n,p}p(n+zp)f'(Q_L),\\ \partial _{xy}^2 E_f[L]&=\frac{4C^2}{u^2}\sum _{m,n,p}np(m+xn+yp)^2f''(Q_L)+\frac{2C}{u}\sum _{m,n,p}npf'(Q_L),\\ \partial _{xz}^2 E_f[L]&=\frac{4C^2v^2}{u^2}\sum _{m,n,p}np(n+zp)(m+xn+yp)f''(Q_L),\\ \partial _{yz}^2 E_f[L]&=\frac{4C^2v^2}{u^2}\sum _{m,n,p}p^2(n+zp)(m+xn+yp)f''(Q_L). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bétermin, L. Local optimality of cubic lattices for interaction energies. Anal.Math.Phys. 9, 403–426 (2019). https://doi.org/10.1007/s13324-017-0205-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-017-0205-5

Keywords

Mathematics Subject Classification

Navigation