Skip to main content
Log in

Epsilon coherent states with polyanalytic coefficients for the harmonic oscillator

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct a new class of coherent states indexed by points z of the complex plane and depending on two positive parameters m and \( \varepsilon >0\) by replacing the coefficients \(z^{n}/\sqrt{n!}\) of the canonical coherent states by polyanalytic functions. These states solve the identity of the states Hilbert space of the harmonic oscillator at the limit \(\varepsilon \rightarrow 0^{+}\) and obey a thermal stability property. Their wavefunctions are obtained in a closed form and their associated Bargmann-type transform is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abreu, L.D., Pereira, J.M., Romero, J.L., Torquato, S.: The Weyl-Heinsenberg ensemble: hyperuiniformity and higher Landau levels. J. Stat. Mech. Theor. Exp. 043103 (2017)

  2. Abreu, L.D.: Sampling and interpolation in Bargmann–Fock spaces of polyanalytic functions. Appl. Comp. Harmon. Anal. 29, 287–302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abreu, L.D., Feichtinger, H.G.: Function Spaces of Polyanalytic Functions, in Harmonic and Complex Analysis and Its Application, pp. 1–38. Birkhauser, Basel (2014)

    MATH  Google Scholar 

  4. Abreu, L.D., Gröchenig, K.: Banach Gabor frames with Hermite functions: polyanalytic spaces from the Heisenberg group. Appl. Anal. 91, 1981–1997 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abreu, L.D., Balazs, P., de Gosson, M., Mouayn, Z.: Discrete coherent states for higher Landau levels. Ann. Phys. 363, 337–353 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ali, S.T., Antoine, J.P., Gazeau, J.P.: Coherent States and Their Generalizations. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  7. Askour, N., Intissar, A., Mouayn, Z.: Espaces de Bargmann gén éralisés et formules explicites pour leurs noyaux reproduisants. Compt. Rend. Acad. Sci. Paris 325(Série I), 707–712 (1997)

    Article  MATH  Google Scholar 

  8. Balk, M.B.: Polyanalytic Functions. Akad. Verlag, Berlin (1991)

    MATH  Google Scholar 

  9. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform, Part I. Comm. Pure Appl. Math. 14, 187–214 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bauerschmidt, R., Paul, B., Nikula, M., Yau , H.-T.: The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem. arXiv:1609.08582 (2017)

  11. Bergeron, H., Siegl, P., Youssef, A.: New SUSYQM coherent states for Pöschl -Teller potentials: a detailed mathematical analysis. J. Phys. A: Math. Theor. 45, 244028 (2012)

    Article  MATH  Google Scholar 

  12. Buchholz, H.: The Confluent Hypergeometric Function, vol. 15. Springer, Berlin (1969)

    MATH  Google Scholar 

  13. Dodonov, V.V.: ’Nonclassical‘ states in quantum optics: a squeezed review of the first 75 years. J. Opt. B: Quantum Semiclass. Opt. 4, R1–R33 (2002)

    Article  MathSciNet  Google Scholar 

  14. Gazeau, J.P.: Coherent States in Quantum Physics. Wiley-VCH Verlag GMBH & Co, KGaA, Weinheim (2009)

    Book  Google Scholar 

  15. Gazeau, J.P., Klauder, J.R.: Coherent states for systems with discrete and continous spectrum. J. Phys. A: Math. Gen. 32, 123–132 (1999)

    Article  MATH  Google Scholar 

  16. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press, Inc, Cambridge (2007)

    MATH  Google Scholar 

  17. Haimi, A., Hedenmalm, H.: The polyanalytic Ginibre ensembles. J. Stat. Phys. 153(1), 10–47 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  19. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  20. Mouayn, Z.: Coherent state transforms attached to generalized Bargmann spaces on the complex plane. Math. Nachr. 284, 1948–1954 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mouayn, Z.: Phase coherent states with circular Jacobi polynomials for the pseudoharmonic oscillator. J. Math. Phys. 53(1), 012103 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mouayn, Z.: Coherent states quantization for generalized Bargmann spaces with formulae for their attached Berezin transforms in terms of the Laplacian on \(\mathbb{C}^{n}\). J. Fourier Anal. Appl. 18, 609–625 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Muckenhoupt, B.: Poisson integrals for Hermite and Laguerre expansions. Trans. Am. Math. Soc. 139, 231–242 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shirai, T.: Ginibre-type point processes and their asymptotic behavior. J. Math. Soc. Jpn. 67(2), 763–787 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Srivastava, H., Manocha, L.: A Treatise on Generating Functions. Ellis Horwood Ltd, London (1984)

    MATH  Google Scholar 

  26. Szegö, G.: Orthogonal Polynomials. American Mathematical Society, Providence (1975)

    MATH  Google Scholar 

  27. Torquato, S., Stillinger, F.H.: Local density fluctuations, hyperuniform systems, and order metrics. Phys. Rev. E. 68, 041113 (2003)

    Article  MathSciNet  Google Scholar 

  28. Vasilevski, N.L.: Poly-Fock spaces, differential operators and related topics. Oper. Theory Adv. Appl 117, 371–386 (2000)

    MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank L. D. Abreu for reading this manuscript and for many useful remarks and comments. I would also like to thank IHES for its support and hospitality during my last visit to this institute in the year 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zouhaïr Mouayn.

Ethics declarations

Conflicts of interest

The author declares that he has no conflict of interest.

Appendices

Appendix A

Proof

Using the orthogonality relations of the basis elements \( \left\{ \varphi _{n}\left( x\right) \right\} \) in (3.7) the scalar product in \(L^{2}\left( \mathbb {R}\right) \) beteween two \(\varepsilon \)-CS can written as

$$\begin{aligned} \langle z;m,\varepsilon \left| w;m,\varepsilon \right\rangle _{L^{2}\left( \mathbb {R}\right) }=\frac{Q_{\varepsilon }\left( z,w\right) }{ \pi m!\sqrt{\mathcal {N}_{m,\varepsilon }\left( z\right) \mathcal {N} _{m,\varepsilon }\left( w\right) }} \end{aligned}$$
(A1)

where

$$\begin{aligned} Q_{\varepsilon }\left( z,w\right) =\sum \limits _{n=0}^{+\infty }\frac{ e^{-n\varepsilon }}{n!}\Phi _{n}^{m}\left( z\right) \overline{\Phi _{n}^{m}\left( w\right) }. \end{aligned}$$
(A2)

Recalling the explicite expression (2.7) of the of the polyanalytic coefficients,  we can split the sum in (A2) into two part as

$$\begin{aligned} Q_{\varepsilon }\left( z,w\right) =\sum \limits _{n=0}^{m-1}e^{-n\varepsilon }n!\left( \left| z\right| \left| w\right| \right) ^{\left( m-n\right) }L_{n}^{\left( m-n\right) }\left( z\overline{z}\right) L_{n}^{\left( m-n\right) }\left( w\overline{w}\right) e^{-i(m-n)\arg z}e^{i(m-n)\arg w}\nonumber \\ +\sum \limits _{n=m}^{+\infty }\frac{e^{-n\varepsilon }}{n!}\left( m!\right) ^{2}\left( \left| z\right| \left| w\right| \right) ^{\left( n-m\right) }L_{m}^{\left( n-m\right) }\left( z\overline{z}\right) L_{m}^{\left( n-m\right) }\left( w\overline{w}\right) e^{-i(m-n)\arg z}e^{i(m-n)\arg w}.\nonumber \\ \end{aligned}$$
(A3)

This quantity can also be decomposed as

$$\begin{aligned} Q_{\varepsilon }\left( z,w\right) =Q_{\varepsilon }^{\left( <\infty \right) }\left( z,w\right) +Q_{\varepsilon }^{\left( \infty \right) }\left( z,w\right) \end{aligned}$$
(A4)

with a finite sum

$$\begin{aligned} Q_{\varepsilon }^{\left( <\infty \right) }\left( z,w\right) :=\sum \limits _{n=0}^{m-1}e^{-n\varepsilon }n!\left( \overline{z}w\right) ^{m-n}L_{n}^{\left( m-n\right) }\left( z\overline{z}\right) L_{n}^{\left( m-n\right) }\left( w\overline{w}\right) \nonumber \\ -\sum \limits _{n=0}^{m-1}\frac{e^{-n\varepsilon }}{n!}\left( m!\right) ^{2}\left( z\overline{w}\right) ^{n-m}L_{m}^{\left( n-m\right) }\left( z \overline{z}\right) L_{m}^{\left( n-m\right) }\left( w\overline{w}\right) \end{aligned}$$
(A5)

and an infinite sum

$$\begin{aligned} Q_{\varepsilon }^{\left( \infty \right) }\left( z,w\right) :=\sum \limits _{n=0}^{+\infty }\frac{e^{-n\varepsilon }}{n!}\left( m!\right) ^{2}\left( z\overline{w}\right) ^{n-m}L_{m}^{\left( n-m\right) }\left( z \overline{z}\right) L_{m}^{\left( n-m\right) }\left( w\overline{w}\right) . \end{aligned}$$
(A6)

Making appeal to the identity ([24], p.98):

$$\begin{aligned} L_{m}^{\left( -k\right) }\left( t\right) =\left( -t\right) ^{k}\frac{\left( m-k\right) !}{m!}L_{m-k}^{\left( k\right) }\left( t\right) ,\quad 1\le k\le m \end{aligned}$$
(A7)

for \(k=j-m\) and \(t=z\overline{z}\), we can check that the finite sum \( Q_{\varepsilon }^{\left( <\infty \right) }\left( z,w\right) =0\). For the infinite sum in (A6) , we rewrite it as

$$\begin{aligned} Q_{\varepsilon }^{\left( \infty \right) }\left( z,w\right) =\frac{\left( m!\right) ^{2}}{\left( z\overline{w}\right) ^{m}}\sum \limits _{n=0}^{+\infty } \frac{1}{n!}\left( z\overline{w}e^{-\varepsilon }\right) ^{n}L_{m}^{\left( n-m\right) }\left( z\overline{z}\right) L_{m}^{\left( n-m\right) }\left( w \overline{w}\right) . \end{aligned}$$
(A8)

We now apply the Wicksell–Campbell–Meixner formula ([25], p.279) : 

$$\begin{aligned} \sum \limits _{n=0}^{+\infty }\frac{\zeta ^{n}}{n!}L_{l}^{\left( n-l\right) }\left( X\right) L_{m}^{\left( n-m\right) }\left( Y\right) =e^{\zeta }\left( \zeta -Y\right) ^{m-l}\frac{\zeta ^{l}}{m!}L_{l}^{\left( m-l\right) }\left( -\left( X-\zeta \right) \left( Y-\zeta \right) \zeta ^{-1}\right) \end{aligned}$$
(A9)

with the notations \(\zeta =e^{-\varepsilon }z\overline{w}\), \(X=z\overline{z} ,Y=w\overline{w}\) and \(l=m.\) With this, Eq.(A8) reduces to

$$\begin{aligned} Q_{\varepsilon }^{\left( \infty \right) }\left( z,w\right) =m!e^{-m\varepsilon }\exp \left( e^{-\varepsilon }z\overline{z}\right) L_{m}^{\left( 0\right) }\left( \left( we^{\varepsilon }-z\right) \left( \overline{w}e^{-\varepsilon }-\overline{z}\right) \right) . \end{aligned}$$
(A10)

Finally, we replace this last expression in the right hand side of (A2) to arrive at the expression (4.3) . We put \( z=w\) in (4.3) and we use the condition \(\langle z;m,\varepsilon \left| z;m,\varepsilon \right\rangle _{L^{2}\left( \mathbb {R}\right) }=1.\) This allows us to obtain the expression (4.4) of the normalization factor. \(\square \)

Appendix B

Proof

For \(x\in \mathbb {R},\) we can write successively

$$\begin{aligned} \mathcal {O}_{\varepsilon }\left[ \varphi \right] \left( x\right)&=\sum _{n=0}^{+\infty }e^{-n\varepsilon }\langle \varphi \left| \varphi _{n}\right\rangle \langle x|\varphi _{n}\rangle \end{aligned}$$
(B1)
$$\begin{aligned}&=\sum _{n=0}^{+\infty }e^{-n\varepsilon }\left( \int _{-\infty }^{+\infty }\varphi \left( y\right) \overline{\langle y\left| \varphi _{n}\right\rangle }dy\right) \langle x|\varphi _{n}\rangle \end{aligned}$$
(B2)
$$\begin{aligned}&=\int _{-\infty }^{+\infty }\left( \sum \limits _{n=0}^{+\infty }e^{-n\varepsilon }\overline{\langle y\left| \varphi _{n}\right\rangle } \langle x|\varphi _{n}\rangle \right) \varphi \left( y\right) dy. \end{aligned}$$
(B3)

We now look closely at the sum

$$\begin{aligned} \mathcal {G}_{\varepsilon }\left( x,y\right) :=\sum \limits _{n=0}^{+\infty }e^{-n\varepsilon }\overline{\langle y\left| \varphi _{n}\right\rangle } \langle x\left| \varphi _{n}\right\rangle =\sum \limits _{n=0}^{+\infty }e^{-n\varepsilon }\varphi _{n}\left( x\right) \overline{\varphi _{n}\left( y\right) }. \end{aligned}$$
(B4)

Recalling the expression (3.7) of the \(\left\{ \varphi _{n}\right\} \) then (4.21) reads

$$\begin{aligned} \mathcal {G}_{\varepsilon }\left( x,y\right) =\frac{1}{\sqrt{\pi }}e^{-\frac{1 }{2}\left( x^{2}+y^{2}\right) }\sum \limits _{n=0}^{+\infty }\left( \frac{1}{2} e^{-\varepsilon }\right) ^{n}\frac{1}{n!}H_{n}\left( x\right) H_{n}\left( y\right) . \end{aligned}$$
(B5)

Equation (B5) can be rewritten as

$$\begin{aligned} \mathcal {G}_{\varepsilon }\left( x,y\right) =e^{-\frac{1}{2}\left( x^{2}+y^{2}\right) }K\left( e^{-\varepsilon };x,y\right) \end{aligned}$$
(B6)

where we have introduced the kernel function

$$\begin{aligned} K\left( \tau ;x,y\right) :=\sum \limits _{j=0}^{+\infty }\tau ^{j}\frac{1}{j!} H_{j}\left( x\right) H_{j}\left( y\right) ;\quad 0<\tau <1. \end{aligned}$$
(B7)

The latter can be written in a closed form by applying the Mehler formula ( [19], p.252):

$$\begin{aligned} K\left( \tau ;x,y\right) =\frac{\pi ^{-\frac{1}{2}}}{\sqrt{1-\tau ^{2}}}\exp \left( \frac{2\tau }{1+\tau }xy-\frac{\tau ^{2}}{1-\tau ^{2}}\left( x-y\right) ^{2}\right) \end{aligned}$$
(B8)

which also is the Poisson kernel for the Hermite polynomials expansion. Taking this into account, Eq. (B3) takes the form

$$\begin{aligned} \mathcal {O}_{\varepsilon }\left[ \varphi \right] \left( x\right) =e^{-\frac{1 }{2}x^{2}}\int _{-\infty }^{+\infty }\varphi \left( y\right) e^{-\frac{1}{2} y^{2}}K\left( e^{-\varepsilon },x,y\right) dy. \end{aligned}$$
(B9)

We can also write the right hand side of (B9) as

$$\begin{aligned} \mathcal {O}_{\varepsilon }\left[ \varphi \right] \left( x\right) =e^{-\frac{1 }{2}x^{2}}M_{\varepsilon }\left[ \varphi \right] \left( x\right) , \end{aligned}$$
(B10)

where

$$\begin{aligned} M_{\varepsilon }\left[ \varphi \right] \left( u\right) =\int _{-\infty }^{+\infty }K\left( e^{-\varepsilon },x,y\right) \varphi \left( y\right) e^{- \frac{1}{2}y^{2}}dy. \end{aligned}$$
(B11)

This suggests us to introduce the function

$$\begin{aligned} f\left( y\right) :=\varphi \left( y\right) e^{-\frac{1}{2}y^{2}},y\in \mathbb {R}. \end{aligned}$$
(B12)

which statisfies

$$\begin{aligned} \left\| f\right\| _{L^{2}\left( \mathbb {\,R},e^{-y^{2}}dy\right) }=\left\| \varphi \right\| _{L^{2}\left( \mathbb {R}\right) }. \end{aligned}$$
(B13)

We now apply the result of B. Muckenhoupt [23] who considered the Poisson integral of Hermite polynomials expansion and proved that for a function \(f\in L^{p}\left( \mathbb {R},e^{-y^{2}}dy\right) \) with \(1\le p\le +\infty \) the integral defined by

$$\begin{aligned} A\left[ f\right] \left( \tau ,x\right) :=\int _{0}^{+\infty }K\left( \tau ,x,y\right) f\left( y\right) e^{-y^{2}}dy;\quad 0\le \tau <1 \end{aligned}$$
(B14)

with the kernel \(K\left( \tau ,\bullet ,\bullet \right) \) defined as given in (B8) satisfies \(\lim _{\tau \rightarrow 1^{-}}A\left[ f \right] \left( \tau ,y\right) =f\left( y\right) \) almost everywhere in \([ 0,+\infty [ ,1\le p\le \infty .\) We apply this result in the case \(p=2,\)\(A\equiv M\) and \(\tau =e^{-\varepsilon }\) to obtain that \( M_{\varepsilon }\left[ \varphi \right] \left( x\right) \rightarrow e^{\frac{1 }{2}x^{2}}\varphi \left( x\right) \), a.e. as \(\varepsilon \rightarrow 0^{+} \) , which says that the limit \(\mathcal {O}_{\varepsilon }\left[ \varphi \right] \left( x\right) =e^{-\frac{1}{2}x^{2}}M_{\varepsilon }\left[ \varphi \right] \left( x\right) \rightarrow \varphi \left( x\right) ,a.e\). as \( \varepsilon \rightarrow 0^{+}\) is valid for every \(\varphi \in L^{2}\left( \mathbb {R}\right) \). In other words, we get the limit

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0^{+}}\int \limits _{\mathbb {C}}\left| z;m,\varepsilon \right\rangle \langle z;m,\varepsilon |d\mu _{m,\varepsilon }\left( z\right) =\mathbf {1}_{L^{2}\left( \mathbb {R}\right) .} \end{aligned}$$
(B15)

in terms of Dirac’s bra-ket notation. This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouayn, Z. Epsilon coherent states with polyanalytic coefficients for the harmonic oscillator. Anal.Math.Phys. 9, 367–383 (2019). https://doi.org/10.1007/s13324-017-0202-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-017-0202-8

Keywords

Navigation