Skip to main content
Log in

Multiplicity of solutions for a class of fractional Choquard–Kirchhoff equations involving critical nonlinearity

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

The aim of this paper is to investigate the multiplicity of solutions to the following nonlocal fractional Choquard–Kirchhoff type equation involving critical exponent,

$$\begin{aligned}&\left( a+b[u]_{s,p}^p\right) (-\Delta )_p^su=\int _{\mathbb {R}^N}\frac{|u(y)|^{p_{\mu ,s}^*}}{|x-y|^{\mu }}dy|u|^{p_{\mu ,s}^*-2}u +\lambda h(x)|u|^{q-2}u\quad&\text{ in } \,\,\mathbb {R}^N,\\&[u]_{s,p}=\left( \int _{\mathbb {R}^{N}}\int _{\mathbb {R}^N}\frac{|u(x)- u(y)|^p}{|x-y|^{N+sp}}dxdy\right) ^{1/p} \end{aligned}$$

where \(a\ge 0, b>0\), \(0<s<\min \{1,N/2p\}\), \(2sp\le \mu <N\), \((-\Delta )_p^s\) is the fractional p-Laplace operator, \(\lambda >0\) is a parameter, \(p_{\mu ,s}^*=\frac{(N-\frac{\mu }{2})p}{N-sp}\) is the critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality, \(1<q<p_s^*=\frac{Np}{N-sp}\) and \(h\in L^{\frac{p_s^*}{p_s^*-q}}(\mathbb {R}^N)\). Under some suitable assumptions, we obtain the multiplicity of nontrivial solutions by using variational methods. In particular, we get the existence of infinitely many nontrivial solutions for the degenerate Kirchhoff case by using Krasnoselskii’s genus theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Rabinowitz, P.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Applebaum, D.: Lévy processes—from probability to finance quantum groups. Not. Am. Math. Soc. 51, 1336–1347 (2004)

    MATH  Google Scholar 

  3. Autuori, G., Pucci, P.: Elliptic problems involving the fractional Laplacian in \(\mathbb{R}^N\). J. Differ. Equ. 255, 2340–2362 (2013)

    Article  MATH  Google Scholar 

  4. Autuori, G., Fiscella, A., Pucci, P.: Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal. 125, 699–714 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caffarelli, L.: Nonlocal diffusions, drifts and games. Nonlinear Part. Differ. Equ. Abel Symp. 7, 37–52 (2012)

    Article  MATH  Google Scholar 

  6. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Part. Differ. Equ. 32, 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caponi, M., Pucci, P.: Existence theorems for entire solutions of stationary Kirchhoff fractional \(p\)-Laplacian equations. Ann. Mat. Pura Appl. 195, 2099–2129 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, K.C.: Critical Point Theory and Applications. Shanghai Scientific and Technology Press, Shanghai (1986)

    MATH  Google Scholar 

  9. Chen, C.S., Wei, Y.F.: Existence, nonexistence, and multiple results for the fractional \(p\)-Kirchhoff-type equation in \(\mathbb{R}^N\). Mediterr. J. Math. 13, 5077–5091 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Clarke, D.C.: A variant of the Lusternik–Schnirelman theory. Indiana Univ. Math. J. 22, 65–74 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  11. Corrêa, F.J.S.A., Figueiredo, G.M.: On a \(p\)-Kirchhoff equation via Krasnoselskii’s genus. Appl. Math. Lett. 22, 819–822 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. d’Avenia, P., Siciliano, G., Squassina, M.: On fractional Choquard equations. Math. Models Methods Appl. Sci. 25, 1447–1476 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dipierro, S., Palatucci, G., Valdinoci, E.: Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Matematiche 68, 201–216 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142, 1237–1262 (2012)

    Article  MATH  Google Scholar 

  16. Figueiredo, G.M., Molica Bisci, G., Servadei, R.: On a fractional Kirchhoff-type equation via Krasnoselskii’s genus. Asymptot. Anal. 94, 347–361 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fiscella, A.: Infinitely many solutions for a critical Kirchhoff type problem involving a fractional operator. Differ. Integral Equ. 29, 513–530 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94, 156–170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fiscella, A., Pucci, P.: \(p\)-fractional Kirchhoff equations involving critical nonlinearities. Nonlinear Anal. Real World Appl. 35, 350–378 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao, F., Yang, M.: On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation (2016), preprint, arxiv:1604.00826

  21. Kichenassamy, S., Veron, L.: Singular solutions of the \(p\)-Laplace equation. Math. Ann. 275, 599–615 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and applications of fractional differential equations. In: North-Holland Mathematics Studies, vol. 204. Elsevier Science BV, Amsterdam (2006)

  23. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  25. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lieb, E., Loss, M.: Analysis, Gradute Studies in Mathematics. AMS, Providence (2001)

    Google Scholar 

  27. Lions, P.-L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1072 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, J., Liao, J.F., Tang, C.L.: Positive solutions for Kirchhoff-type equations with critical exponent in \(\mathbb{R}^N\). J. Math. Anal. Appl. 429, 1153–1172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989)

    Book  MATH  Google Scholar 

  30. Menzala, G.P.: On regular solutions of a nonlinear equation of Choquard’s type. Proc. R. Soc. Edinb. Sect. A 86, 291–301 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  31. Metzler, R., Klafter, J.: The restaurant at the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, 161–208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mingqi, X., Molica Bisci, G., Tian, G.H., Zhang, B.L.: Infinitely many solutions for the stationary Kirchhoff problems involving the fractional \(p\)-Laplacian. Nonlinearity 29, 357–374 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mingqi, X., Pucci, P., Squassina, M., Zhang, B.L.: Nonlocal Schrodinger–Kirchhoff equations with external magnetic field. Discret. Contin. Dyn. Syst. A 37, 1631–1649 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Molica Bisci, G., Rǎdulescu, V.D.: Ground state solutions of scalar field fractional Schrödinger equations. Calc. Var. Partial Differ. Equ. 54, 2985–3008 (2015)

    Article  MATH  Google Scholar 

  35. Moroz, V., van Schaftingen, J.: Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Moroz, I.M., Penrose, R., Tod, P.: Spherically-symmetric solutions of the Schrödinger–Newton equations. Class. Quantum Gravity 15, 2733–2742 (1998)

    Article  MATH  Google Scholar 

  37. Naimen, D.: The critical problem of Kirchhoff type elliptic equations in dimension four. J. Differ. Equ. 257, 1168–1193 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nyamoradi, N.: Existence of three solutions for Kirchhoff nonlocal operators of elliptic type. Math. Commun. 18, 489–502 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Pekar, S.: Untersuchungüber die Elektronentheorie der Kristalle. Akademie, Berlin (1954)

    MATH  Google Scholar 

  40. Perera, K., Squassina, M., Yang, Y.: Bifurcation and multiplicity results for critical fractional \(p\)-Laplacian problems. Math. Nachr. 289, 332–342 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Perera, K., Squassina, M., Yang, Y.: Critical fractional \(p-\)Laplacian problems with possibly vanishing potentials. J. Math. Anal. Appl. 433, 818–831 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pucci, P., Saldi, S.: Critical stationary Kirchhoff equations in \(\mathbb{R}^N\) involving nonlocal operators. Rev. Mat. Iberoam. 32, 1–22 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pucci, P., Xiang, M.Q., Zhang, B.L.: Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional \(p\)-Laplacian in \(\mathbb{R}^N\). Calc. Var. Partial Differ. Equ. 54, 2785–2806 (2015)

    Article  MATH  Google Scholar 

  44. Pucci, P., Xiang, M.Q., Zhang, B.L.: Existence and multiplicity of entire solutions for fractional \(p\)-Kirchhoff equations. Adv. Nonlinear Anal. 5, 27–55 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Pucci, P., Xiang, M.Q., Zhang, B. L.: Existence results for Schrödinger–Choquard–Kirchhoff equations involving the fractional \(p-\)Laplacian (2016), preprint

  46. Rabinowitz, P.: Minimax method in critical point theory with applications to differential equations. In: CBMS Reg. Conf. Ser. Math., vol. 65. American Mathematical Society, Providence, RI (1986)

  47. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discret. Contin. Dyn. Syst. 33, 2105–2137 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Shen, Z.F., Gao, F.S., Yang, M.B.: Groundstates for nonlinear fractional Choquard equations with general nonlinearities. Math. Methods Appl. Sci. (2016). doi:10.1002/mma.3849

    MATH  Google Scholar 

  49. Wang, F.L., Xiang, M.Q.: Multiplicity of solutions to a nonlocal Choquard equation involving fractional magnetic operators and critical exponent. Electron. J. Differ. Equ. 2016, 1–11 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Xiang, M.Q., Zhang, B.L., Ferrara, M.: Existence of solutions for Kirchhoff type problem involving the non-local fractional \(p\)-Laplacian. J. Math. Anal. Appl. 424, 1021–1041 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Xiang, M.Q., Zhang, B.L., Rǎdulescu, V.: Existence of solutions for perturbed fractional \(p\)-Laplacian equations. J. Differ. Equ. 260, 1392–1413 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Xiang, M.Q., Zhang, B.L., Rǎdulescu, V.: Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional \(p\)-Laplacian. Nonlinearity 290, 3186–3205 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Xiang, M. Q., Zhang, B. L., Zhang, X.: A nonhomogeneous fractional \(p\)-Kirchhoff type problem involving critical exponent in \({\mathbb{R}}^{N}\), Adv. Nonlinear Stud. doi:10.1515/ans-2016-6002

Download references

Acknowledgements

M. Xiang was supported by the National Natural Science Foundation of China (No. 11601515) and the Fundamental Research Funds for the Central Universities (No. 3122017080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqi Xiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Xiang, M. Multiplicity of solutions for a class of fractional Choquard–Kirchhoff equations involving critical nonlinearity. Anal.Math.Phys. 9, 1–16 (2019). https://doi.org/10.1007/s13324-017-0174-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-017-0174-8

Keywords

Mathematics Subject Classification

Navigation