Skip to main content
Log in

An \({\hbar}\)-expansion of the Toda hierarchy

A recursive construction of solutions

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

A construction of general solutions of the \({\hbar}\) -dependent Toda hierarchy is presented. The construction is based on a Riemann–Hilbert problem for the pairs (L, M) and \({(\bar {L},\bar {M})}\) of Lax and Orlov-Schulman operators. This Riemann–Hilbert problem is translated to the language of the dressing operators W and \(\bar {W}\) . The dressing operators are set in an exponential form as \({W = e^{X/\hbar}}\) and \({\bar {W} = e^{\phi/\hbar}e^{\bar {X}/\hbar}}\) , and the auxiliary operators \({X, \bar {X}}\) and the function \({\phi}\) are assumed to have \({\hbar}\) -expansions \({X = X_0 + \hbar X_1 + . . . , \bar {X}= \bar {X}_0 + \hbar\bar {X}_1 + . . .}\) and \({\phi = \phi_0 + \hbar\phi_1 + . . .}\) . The coefficients of these expansions turn out to satisfy a set of recursion relations. \({X, \bar {X}}\) and \({\phi}\) are recursively determined by these relations. Moreover, the associated wave functions are shown to have the WKB form \({\Psi = e^{S/\hbar}}\) and \({\bar {\Psi}= e^{\bar {S}/\hbar}}\) , which leads to an \({\hbar}\) -expansion of the logarithm of the tau function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takasaki, K., Takebe, T.: \({\hbar}\) -Expansion of KP hierarchy—recursive construction of solutions. arXiv:0912.4867

  2. Takasaki, K., Takebe, T.: \({\hbar}\) -Dependent KP hierarchy. Theoret. Math. Phys. (2011, to appear). The Proceedings of the “International Workshop on Classical and Quantum Integrable Systems 2011”, January 24–27, 2011 Protvino, Russia. arXiv:1105.0794

  3. Takasaki K., Takebe T.: Integrable hierarchies and dispersionless. Limit. Rev. Math. Phys. 7, 743–803 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aoki T.: Calcul exponentiel des opérateurs microdifférentiels d’ordre infini. II. Ann. Inst. Fourier (Grenoble) 36, 143–165 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dijkgraaf, R.: Intersection theory, integrable hierarchies and topological field theory. In: New Symmetry Principles in Quantum Field Theory (Cargèse, 1991). NATO Adv. Sci. Inst. Ser. B Phys., vol. 295, pp. 95–158 (1992)

  6. Krichever I.M.: The dispersionless Lax equations and topological minimal models. Commun. Math. Phys. 143, 415–426 (1991)

    Article  MathSciNet  Google Scholar 

  7. Morozov A.: Integrability and matrix models. Phys. Usp. 37, 1–55 (1994)

    Article  MATH  Google Scholar 

  8. Di Francesco P., Ginsparg P., Zinn-Justin J.: 2D gravity and random matrices. Phys. Rep. 254, 133 (1995)

    MathSciNet  Google Scholar 

  9. Flaschka H., Forest M.G., McLaughlin D.W.: Multiphase averaging and the inverse spectral solution of the Korteweg-de Vries equation. Commun. Pure. Appl. Math. 33, 739–784 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Krichever I.M.: Method of averaging for two-dimensional “integrable” equations. Funct. Anal. Appl. 22, 200–213 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Krichever I.M.: Spectral theory of two-dimensional periodic operators and its applications. Russ. Math. Surveys 44(2), 145–225 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Martınez Alonso L., Medina E.: Semiclassical expansions in the Toda hierarchy and the hermitian matrix model. J. Phys. A: Math. Gen. 40, 14223 (2007)

    Article  MATH  Google Scholar 

  13. Ueno, K., Takasaki, K.: Toda lattice hierarchy. In: Okamoto, K. (ed.) Group Representations and Systems of Differential Equations. Advanced Studies in Pure Math., vol. 4, pp. 1–95. North- Holland/Kinokuniya (1984)

  14. Takasaki K., Takebe T.: SDiff(2) Toda equation—hierarchy, tau function, and symmetries. Lett. Math. Phys. 23, 205–214 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dijkgraaf R., Moore G., Plesser R.: The partition function of 2D string theory. Nucl. Phys. B 394, 356–382 (1993)

    Article  MathSciNet  Google Scholar 

  16. Eguchi T., Kanno H.: Toda lattice hierarchy and the topological description of c = 1 string theory. Phys. Lett. B 331, 330–334 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hanany A., Oz Y., Plesser R.: Topological Landau-Ginzburg formulation and integrable structure of 2D string theory. Nucl. Phys. B 425, 150–172 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Alexandrov A., Mironov A., Morozov A.: Partition functions of matrix models as the first special functions of string theory I. Finite size Hermitean 1-matrix model. Int. J. Mod. Phys. A 19, 4127–4165 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Alexandrov A., Mironov A., Morozov A.: Solving Virasoro constraints in matrix models. Fortsch. Phys. 53, 512–521 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eynard B., Orantin N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1, 347–452 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Orlov A.Yu.: Schulman, E.I.: Additional symmetries for integrable equations and conformal algebra representation. Lett. Math. Phys. 12, 171–179 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Orlov, A.Yu.: Vertex operators, \({\bar {\partial}}\) -problems, symmetries, variational identities and Hamiltonian formalism for 2 + 1 integrable systems. In: Plasma Theory and Nonlinear and Turbulent Processes in Physics. World Scientific, Singapore (1988)

  23. Grinevich, P.G., Orlov, A.Yu.: Virasoro action on Riemann surfaces, Grassmannians, det \({\bar {\partial}_j}\) and Segal Wilson τ function. In: Problems of Modern Quantum Field Theory. Springer, Berlin (1989)

  24. Schapira, P.: Microdifferential systems in the complex domain. Grundlehren der mathematischen Wissenschaften 269. Springer, Berlin-New York (1985)

  25. Takasaki K.: Toda lattice hierarchy and generalized string equations. Commun. Math. Phys. 181, 131–156 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Takebe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takasaki, K., Takebe, T. An \({\hbar}\)-expansion of the Toda hierarchy. Anal.Math.Phys. 2, 171–214 (2012). https://doi.org/10.1007/s13324-012-0026-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-012-0026-5

Mathematics Subject Classification (2000)

Navigation