Skip to main content
Log in

Mixed Finite Element Approximation for Bivariate Perona–Malik Model Arising in 2D and 3D Image Denoising

  • 3DR Express
  • Published:
3D Research

Abstract

In this paper, we present a new model of nonlinear diffusion arising in image processing field based on the Perona–Malik equation which we call the bivariate Perona–Malik model. The aim of this model is to remove image noise while preserving edges, boundaries, and textures. To solve this model we use a new algorithm based on mixed finite element method. In this context we prove mathematically the existence and uniqueness of the solution of the proposed model in a well chosen space. At last, we present the experimental results in 2D and 3D images filtering, which demonstrate the efficiency and effectiveness of our algorithm and finally, we compare it with other well known methods such as the finite difference method presented by Perona et al. (IEEE Trans Pattern Anal Mach Intell 12:629–639, 1990), the finite element method and the finite volume method studied by Handlovičová et al. (J Vis Commun Image Represent 13:217–237, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Perona, P., & Malik, J. (1990). Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629–639.

    Article  Google Scholar 

  2. Catte, F., Lions, P. L., Morel, J. M., & Coll, T. (1992). Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis, 29, 182–193.

    Article  MathSciNet  Google Scholar 

  3. Handlovicova, A., Mikula, K., & Sgallari, F. (2002). Variational numerical methods for solving nonlinear diffusion equations arising in image processing. Journal of Visual Communication and Image Representation, 13, 217–237.

    Article  Google Scholar 

  4. Alvarez, L., Lions, P. L., & Morel, J. M. (1992). Image selective smoothing and edge detection by nonlinear diffusion II, SIAM. Journal of Numerical Analysis, 29, 845–866.

    Article  Google Scholar 

  5. Brezzi, E., & Fortin, M. (1991). Mixed and hybrid finite element methods. New York: Springer.

    Book  Google Scholar 

  6. Stenberg, R. (1990). A technique for analysing finite element methods for viscous incompressible flow. International Journal for Numerical Methods in Fluids, 11, 935–948.

    Article  MathSciNet  Google Scholar 

  7. Aboulaicha, R., Meskine, D., & Souissi, A. (2008). New diffusion models in image processing. Computers and Mathematics with Applications, 56, 874–882.

    Article  MathSciNet  Google Scholar 

  8. Mikula, K., & Ramarosy, N. (2001). Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing. Numerische Mathematik, 89, 561–590.

    Article  MathSciNet  Google Scholar 

  9. Alvarez, L., & Morel, J. M. (1994). Formalization and computational aspects of image analysis. Acta Numerica, 3, 1–59.

    Article  MathSciNet  Google Scholar 

  10. Preusser, T., & Rumpf, M. (1999). An adaptive finite element method for large scale image processing. In M. Nielsen, P. Johansen, O. F. Olsen, & J. Weickert (Eds.), Proceedings of ScaleSpace-99 (pp. 223–234). Berlin: Springer.

    Google Scholar 

  11. Osher, S., & Sethian, J. (1988). Front propagating with curvature dependent speed: Algorithms based on the Hamilton–Jacobi formulation. Journal of Computational Physics, 79, 12–49.

    Article  MathSciNet  Google Scholar 

  12. Sethian, J. A. (1990). Numerical algotithm for propagating interfaces: Hamilton–Jacobi equations and conservation laws. Journal of Differential Geometry, 31, 131–161.

    Article  MathSciNet  Google Scholar 

  13. Dziuk, G. (1994). Convergence of a semidiscrete scheme for the curve shortening flow. Mathematical Models and Methods in Applied Sciences, 4, 589–606.

    Article  MathSciNet  Google Scholar 

  14. Dziuk, G. (1991). Algorithm for evolutionary surfaces. Numerische Mathematik, 58, 603–611.

    Article  MathSciNet  Google Scholar 

  15. Sapiro, G., & Tannenbaum, A. (1994). On affine plane curve evolution. Journal of Functional Analysis, 119, 79–120.

    Article  MathSciNet  Google Scholar 

  16. Walkington, N. J. (1996). Algorithms for computing motion by mean curvature, SIAM. Journal of Numerical Analysis, 33, 2215–2238.

    Article  Google Scholar 

  17. Brezzi, F., & Falk, R. (1991). Stability of higher order Taylor-Hood methods. SIAM Journal on Numerical Analysis, 28(3), 581–590.

    Article  MathSciNet  Google Scholar 

  18. Brenner, S. C., & Scott, L. R. (2002). The mathematical theory of finite element methods, of Texts in Applied Mathematics (2nd ed., p. 15). New York: Springer.

    Book  Google Scholar 

  19. Wieners, C. (2003). Taylor-Hood elements in 3D, analysis and simulation of multifield problems (pp. 189–196). Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  20. Handlovičová, A., Mikula, K., & Sarti, A. (1999). Numerical solution of parabolic equations related to level set formulation of mean curvature flow. Computing and Visualization in Science, 1, 179–182.

    MATH  Google Scholar 

  21. Kačur, J., & Mikula, K. (1995). Solution of nonlinear diffusion appearing in image smoothing and edge detection. Applied Numerical Mathematics, 17, 47–59.

    Article  MathSciNet  Google Scholar 

  22. Eymard, R., Gallouet, T., & Herbin, R. (2000). The finite volume method. In P. Ciarlet & P. L. Lions (Eds.), Handbook for numerical analysis (Vol. 7, pp. 715–1022). Amsterdam: Elsevier.

    Google Scholar 

  23. Bansch, E., & Mikula, K. (1999). Adaptivity in 3D image processing, Preprint 99–14. Zentrum fur Technomathematik: Universitat Bremen.

  24. Sarti, A., Mikula, K., & Sgallari, F. (1999). Nonlinear multiscale analysis of 3D echocardiographic sequences. IEEE Transactions on Medical Imaging, 18, 453–466.

    Article  Google Scholar 

  25. John, F. (1991). Partial differential equations (4th edn). Springer. ISBN 978-0-387-90609-6.

  26. Farhloul, M., & Fortin, M. (1993). A new mixed finite element for the stokes and elasticity problems. SIAM Journal on Numerical Analysis, 30(4), 971.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Hjouji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hjouji, A., Jourhmane, M., EL-Mekkaoui, J. et al. Mixed Finite Element Approximation for Bivariate Perona–Malik Model Arising in 2D and 3D Image Denoising. 3D Res 9, 36 (2018). https://doi.org/10.1007/s13319-018-0187-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-018-0187-6

Keywords

Navigation