Skip to main content
Log in

An Image Encryption Scheme Based on Lorenz System for Low Profile Applications

  • 3DR Express
  • Published:
3D Research

Abstract

Advanced encryption standard being a benchmark for encryption is very ideal for digital images encryption for its security reasons but might not be effective for low profile applications due to its high computational and hardware complexity. In this paper, we presents a robust image encryption scheme for these types of applications based on chaotic sequences of Lorenz system, also ensuring the system security as well. The security strength is evident from the results of statistical and key analysis done in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hussain, I., Gondal, M. A., & Hussain, A. (2015). ‘Construction of Dynamical Non-linear Components Based on Lorenz System and Symmetric Group of Permutations, 3D Research, 6, doi:10.1007/s13319-014-0031-6.

  2. Hussain, I., Gondal, M. A., & Hussain, A. (2015). ‘Construction of Substitution Box Based on Piecewise Linear Chaotic Map and S8 Group, 3D Research, 6, doi:10.1007/s13319-014-0032-5.

  3. Gondal, M. A., Raheem, M. A., & Hussain, I. (2014). A Scheme for Obtaining Secure S-Boxes Based on Chaotic Bakers Map, 3D Research, 5, doi:10.1007/s13319-014-0017-4.

  4. Ahmed, F., Anees, A., Abbas, V. U., & Siyal, M. Y. (2014). A Noisy Channel Tolerant Image Encryption Scheme. Wireless Personal Communications, 77(4), 2771–2791.

    Article  Google Scholar 

  5. Ahmed, F., & Anees, A. (2015). Hash-Based Authentication of Digital Images in Noisy Channels, Robust Image Authentication in the Presence of Noise. doi:10.1007/978-3-319-13156-6_1.

  6. U.S. Department of Commerce (1977), Data Encryption Standard, Federal Information Processing Standard (FIPS) Publication 46, Washington DC

    Google Scholar 

  7. Daemen, J., & Rijmen, V. (2002). The Design of Rijndael: AES The Advanced Encryption Standard. Berlin: Springer. (ISBN 3-540-42580-2).

    Book  Google Scholar 

  8. Anees, A., Siddiqui, A. M., & Ahmed, F. (2014). Chaotic substitution for highly autocorrelated data in encryption algorithm. Communications in Nonlinear Science & Numerical Simulation, 19(9), 3106–3118.

    Article  MathSciNet  Google Scholar 

  9. Anees, A., Siddiqui, A. M., Ahmed, J., & Hussain, I. (2014). A technique for digital steganography using chaotic maps. Nonlinear Dynamics, 75(4), 807–816.

    Article  Google Scholar 

  10. Gondal, M. A., & Anees, A. (2013). Analysis of optimized signal processing algorithms for smart antenna system. Neural Computing & Applications, 23(3–4), 1083–1087.

    Article  Google Scholar 

  11. Anees, A., Khan, W. A., Gondal, M. A., & Hussain, I. (2013). Application of Mean of Absolute Deviation Method for the Selection of Best Nonlinear Component Based on Video Encryption. Zeitschrift fr Naturforschung A, 68(a), 479–482.

    Google Scholar 

  12. Anees, A., & Ahmed, Z. (2015). A Technique for Designing Substitution Box Based on Van der Pol Oscillator. Wireless Personal Communications, 82(3), 1497–1503.

    Article  Google Scholar 

  13. Anees, A., & Gondal, M. A. (2015). Construction of Nonlinear Component for Block Cipher Based on One-Dimensional Chaotic Map, 3D Research, 6(17), doi:10.1007/s13319-015-0049-4.

  14. Anees, A., & Siddiqui, A. M. (2013). A technique for digital watermarking in combined spatial and transform domains using chaotic maps, IEEE 2nd National Conference on Information Assurance (NCIA), pp. 119–124, 10.1109/NCIA.2013.6725335.

  15. Kocarev, L. (2001). Chaos-based cryptography: A brief overview. IEEE Circuits & Systems Magazine, 1(3), 6–21.

    Article  Google Scholar 

  16. Shannon, C. E. (1949). Communication Theory of Secrecy Systems. Bell System Technical Journal, 28(4), 656–715.

    Article  MATH  MathSciNet  Google Scholar 

  17. Volos, C., Kyprianidis, I., & Stouboulos, I. (1997). Image encryption process based on chaotic synchronization phenomena. Signal Process, 93, 1328–1367.

    Article  Google Scholar 

  18. Baptista, M. (1998). Cryptography with chaos. Physics Letters A, 240, 50–53.

    Article  MATH  MathSciNet  Google Scholar 

  19. Tao, Y., Wu, C. W., & Chua, L. O. (1997). Cryptography based on chaotic system. IEEE Transactions on Circuits and Systems I Fundamental Theory and Applications, 44(5), 469–472.

    Article  MATH  Google Scholar 

  20. Han, Z., Feng, W. X., Hui, L. Z., Hai, L. D., & Chou, L. Y. (2003). A new image encryption algorithm based on chaos system. IEEE International Conference on Robotics Intelligent Systems and Signal Processing, 2, pp. 778–782.

  21. Alvarez, G., Montoya, F., Pastor, G., & Romera, M. (1999). Chaotic cryptosystems, IEEE 33rd Annual 1999 International Carnahan Conference on Security Technology, (pp. 332–338), Madrid.

  22. Kwok, H. S., & Tang, W. K. S. (2005). A fast image encryption system based on chaotic maps with finite precision representation. Chaos Solitons Fractals, 32(4), 1518–1529.

    Article  MathSciNet  Google Scholar 

  23. Lorenz, E. N. (1963). Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20, 130–141.

    Article  Google Scholar 

  24. Taylor, R. (1990). Interpretation of the Correlation Coefficient: A Basic Review. Journal of Diagnostic Medical Sonography, 1, 35–39.

    Article  Google Scholar 

  25. Wu, Y., Noonan, J. P., & Agaian, S. (2010). NPCR and UACI randomness tests for image encryption. In Cyber journals: Multidisciplinary journals in science and technology, journal of selected areas in telecommunications, (April ed., pp. 31–38).

  26. Shah, T., Hussain, I., Gondal, M. A., & Mahmood, H. (2011). Statistical analysis of S-box in image encryption applications based on majority logic criterion. International Journal of the Physical Sciences, 6(16), 4110–4127.

    Google Scholar 

  27. Hussain, I., Azam, N. A., & Shah, T. (2014). Stego optical encryption based on chaotic S-box transformation. Optics & Laser Technology, 61, 50–56.

    Article  Google Scholar 

  28. Hussain, I., Shah, T., & Gondal, M. A. (2012). An efficient image encryption algorithm basedon S8 S-box transformation and NCA map. Optics Communications, 285, 4887–4890.

    Article  Google Scholar 

  29. Liua, H., & Wang, X. (2010). Color image encryption based on one-time keys and robust chaotic maps. Computers & Mathematics with Applications, 59(10), 3320–3327.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Anees.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anees, A. An Image Encryption Scheme Based on Lorenz System for Low Profile Applications. 3D Res 6, 24 (2015). https://doi.org/10.1007/s13319-015-0059-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-015-0059-2

Keywords

Navigation