Skip to main content
Log in

The Analysis of Pethidine Pharmacokinetics in Newborn Saliva, Plasma, and Brain Extracellular Fluid After Prenatal Intrauterine Exposure from Pregnant Mothers Receiving Intramuscular Dose Using PBPK Modeling

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Pethidine (meperidine) can decrease labor pain-associated mother’s hyperventilation and high cortisol-induced newborn complications. However, prenatal transplacentally acquired pethidine can cause side effects in newborns. High pethidine concentrations in the newborn brain extracellular fluid (bECF) can cause a serotonin crisis. Therapeutic drug monitoring (TDM) in newborns' blood distresses them and increases infection incidence, which can be overcome by using salivary TDM. Physiologically based pharmacokinetic (PBPK) modeling can predict drug concentrations in newborn plasma, saliva, and bECF after intrauterine pethidine exposure.

Methods

A healthy adult PBPK model was constructed, verified, and scaled to newborn and pregnant populations after intravenous and intramuscular pethidine administration. The pregnancy PBPK model was used to predict the newborn dose received transplacentally at birth, which was used as input to the newborn PBPK model to predict newborn plasma, saliva, and bECF pethidine concentrations and set correlation equations between them.

Results

Pethidine can be classified as a Salivary Excretion Classification System class II drug. The developed PBPK model predicted that, after maternal pethidine intramuscular doses of 100 mg and 150 mg, the newborn plasma and bECF concentrations were below the toxicity thresholds. Moreover, it was estimated that newborn saliva concentrations of 4.7 µM, 11.4 µM, and 57.7 µM can be used as salivary threshold concentrations for pethidine analgesic effects, side effects, and the risk for serotonin crisis, respectively, in newborns.

Conclusion

It was shown that saliva can be used for pethidine TDM in newborns during the first few days after delivery to mothers receiving pethidine.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee MC, Abrahams M. Pain and analgesics. 11th ed. London: Elsevier; 2012.

    Google Scholar 

  2. Huch R. Maternal hyperventilation and the fetus. J Perinat Med. 1986;14:3–17. https://doi.org/10.1515/jpme.1986.14.1.3.

    Article  CAS  PubMed  Google Scholar 

  3. Motoyama E, Acheson F, Rivard G, Cook C. Adverse effect of maternal hyperventilation on the fetus. Lancet. 1966;287:286–8. https://doi.org/10.1016/S0140-6736(66)90639-8.

    Article  Google Scholar 

  4. Thalme B, Belfrage P, Raabe N. Lumbar epidural analgesia in labour. Acta Obstet Gynecol Scand. 1974;53:27–35. https://doi.org/10.3109/00016347409156885.

    Article  CAS  PubMed  Google Scholar 

  5. Segal S, Wang SY. The effect of maternal catecholamines on the caliber of gravid uterine microvessels. Anesth Analg. 2008;106:888–92. https://doi.org/10.1213/ane.0b013e3181617451.

    Article  CAS  PubMed  Google Scholar 

  6. Reynolds F. The effects of maternal labour analgesia on the fetus. Best Pract Res Clin Obstet Gynaecol. 2010;24:289–302. https://doi.org/10.1016/j.bpobgyn.2009.11.003.

    Article  PubMed  Google Scholar 

  7. Garimella V, Cellini C. Postoperative pain control. Clin Colon Rectal Surg. 2013;26:191–6. https://doi.org/10.1055/s-0033-1351138.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kee WN. Intrathecal pethidine: pharmacology and clinical applications. Anaesth Intensive Care. 1998;26:137–46. https://doi.org/10.1177/0310057X9802600202.

    Article  Google Scholar 

  9. Cooper LV, Stephen GW, Aggett PJ. Elimination of pethidine and bupivacaine in the newborn. Arch Dis Child. 1977;52:638–41. https://doi.org/10.1136/adc.52.8.638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Freeborn SF, Calvert RT, Black P, Macfarlane T, D’Souza SW. Saliva and blood pethidine concentrations in the mother and the newborn baby. BJOG. 1980;87:966–9. https://doi.org/10.1111/j.1471-0528.1980.tb04459.x.

    Article  CAS  Google Scholar 

  11. Belfrage P, Boréus LO, Hartvig P, Irestedt L, Raabe N. Neonatal depression after obstetrical analgesia with pethidine. The role of the injection-delivery time interval and of the plasma concentrations of pethidine and norpethidine. Acta Obstet Gynecol Scand. 1981;60:43–9. https://doi.org/10.3109/00016348109154108.

    Article  CAS  PubMed  Google Scholar 

  12. Rickli A, Liakoni E, Hoener MC, Liechti ME. Opioid-induced inhibition of the human 5-HT and noradrenaline transporters in vitro: link to clinical reports of serotonin syndrome. Br J Pharmacol. 2018;175:532–43. https://doi.org/10.1111/bph.14105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olive J, Masana L, Gonzalez J. Meperidine and reversible parkinsonism. Mov Disord. 1994;9:115–6. https://doi.org/10.1002/mds.870090126.

    Article  CAS  PubMed  Google Scholar 

  14. Tortella FC, Cowan A, Adler MW. Studies on the excitatory and inhibitory influence of intracerebroventricularly injected opioids on seizure thresholds in rats. Neuropharmacology. 1984;23:749–54. https://doi.org/10.1016/0028-3908(84)90107-2.

    Article  CAS  PubMed  Google Scholar 

  15. Latta KS, Ginsberg B, Barkin RL. Meperidine: a critical review. Am J Ther. 2002;9:53–68.

    Article  PubMed  Google Scholar 

  16. Seifert CF, Kennedy S. Meperidine is alive and well in the new millennium: evaluation of meperidine usage patterns and frequency of adverse drug reactions. Pharmacotherapy. 2004;24:776–83. https://doi.org/10.1592/phco.24.8.776.36066.

    Article  CAS  PubMed  Google Scholar 

  17. World Health Organization. WHO recommendation on opioid analgesia for pain relief during labour. 2021. https://srhr.org/rhl/article/who-recommendation-on-opioid-analgesia-for-pain-relief-during-labour. Accessed 24 Feb 2023.

  18. Alsmadi MM, Idkaidek N. Optimization of drugs pharmacotherapy during pregnancy using physiologically based pharmacokinetic models-an update. Curr Drug Metab. 2018;19:972–8. https://doi.org/10.2174/1389200219666180702104034.

    Article  CAS  PubMed  Google Scholar 

  19. Food U, Administration D. Guidance for industry. Pharmacokinetics in pregnancy—study design, data analysis, and impact on dosing and labeling. 2004. 2017. Accessed 21 Feb 2023.

  20. Illamola SM, Bucci-Rechtweg C, Costantine MM, Tsilou E, Sherwin CM, Zajicek A. Inclusion of pregnant and breastfeeding women in research–efforts and initiatives. Br J Clin Pharmacol. 2018;84:215–22. https://doi.org/10.1111/bcp.13438.

    Article  PubMed  Google Scholar 

  21. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349:1157–67. https://doi.org/10.1056/NEJMra035092.

    Article  CAS  PubMed  Google Scholar 

  22. Abduljalil K, Jamei M, Johnson TN. Fetal physiologically based pharmacokinetic models: systems information on fetal blood components and binding proteins. Clin Pharmacokinet. 2020;59:629–42. https://doi.org/10.1007/s40262-019-00836-3.

    Article  CAS  PubMed  Google Scholar 

  23. Jong GW, Vulto AG, de Hoog M, Schimmel KJ, Tibboel D, van den Anker JN. Unapproved and off-label use of drugs in a children’s hospital. N Engl J Med. 2000;343:1125. https://doi.org/10.1056/NEJM200010123431515.

    Article  PubMed  Google Scholar 

  24. Conroy S, Choonara I, Impicciatore P, Mohn A, Arnell H, Rane A, et al. Survey of unlicensed and off label drug use in paediatric wards in European countries. Br Med J. 2000;320:79–82. https://doi.org/10.1136/bmj.320.7227.79.

    Article  CAS  Google Scholar 

  25. Zhao W, Jacqz-Aigrain E. Principles of therapeutic drug monitoring. In: Seyberth HW, Rane A, Schwab M, editors. Pediatric clinical pharmacology. Berlin: Springer; 2011. p. 77–90.

    Chapter  Google Scholar 

  26. Morselli PL, Rovei V. Placental transfer of pethidine and norpethidine and their pharmacokinetics in the newborn. Eur J Clin Pharmacol. 1980;18:25–30. https://doi.org/10.1007/BF00561475.

    Article  CAS  PubMed  Google Scholar 

  27. Hawcutt D, Rose A, Fuerst-Recktenwald SNT, Turner M. Points to consider when planning the collection of blood or tissue samples in clinical trials of investigational medicinal products in children, infants and neonates. In: Van den Anker J, Rose K, editors. Guide to paediatric drug development and clinical research. Washington D.C: Karger Publishers; 2010. p. 97–110.

    Chapter  Google Scholar 

  28. Gorodischer R, Koren G. Salivary excretion of drugs in children: theoretical and practical issues in therapeutic drug monitoring. Dev Pharmacol Ther. 1992;19:161–77. https://doi.org/10.1159/000457481.

    Article  CAS  PubMed  Google Scholar 

  29. Cook CE, Amerson E, Poole WK, Lesser P, O’Tuama L. Phenytoin and phenobarbital concentrations in saliva and plasma measured by radioimmunoassay. Clin Pharmacol Ther. 1975;18:742–7. https://doi.org/10.1002/cpt1975186742.

    Article  CAS  PubMed  Google Scholar 

  30. Tal A, Aviram M, Gorodischer R. Variations in theophylline concentrations detected by 24-hour saliva concentration profiles in ambulatory children with asthma. J Allergy Clin Immunol. 1990;86:238–43.

    CAS  PubMed  Google Scholar 

  31. Tsiropoulos I, Kristensen O, Klitgaard NA. Saliva and serum concentration of lamotrigine in patients with epilepsy. Ther Drug Monit. 2000;22:517–21. https://doi.org/10.1097/00007691-200010000-00003.

    Article  CAS  PubMed  Google Scholar 

  32. Gordi T, Hai TN, Hoai NM, Thyberg M, Ashton M. Use of saliva and capillary blood samples as substitutes for venous blood sampling in pharmacokinetic investigations of artemisinin. Eur J Clin Pharmacol. 2000;56:561–6. https://doi.org/10.1007/s002280000179.

    Article  CAS  PubMed  Google Scholar 

  33. García-Robles A, Solaz-García Á, Verdú-Andrés J, Poveda-Andrés JL, Cháfer-Pericás C, Ponce-Rodriguez HD, et al. The usefulness of saliva in therapeutic drug monitoring of caffeine in preterm infants. Ther Drug Monit. 2021;23:250–4. https://doi.org/10.21203/rs.3.rs-236907/v1.

    Article  Google Scholar 

  34. Idkaidek N, Hamadi S, Bani-Domi R, Al-Adham I, Alsmadi M, Awaysheh F, et al. Saliva versus Plasma Therapeutic Drug Monitoring of Gentamicin in Jordanian Preterm Infants. Development of a Physiologically-Based Pharmacokinetic (PBPK) Model and Validation of Class II Drugs of Salivary Excretion Classification System. Drug Res. 2020;70:455–62. https://doi.org/10.1055/a-1233-3582.

    Article  CAS  Google Scholar 

  35. Hutchinson L, Sinclair M, Reid B, Burnett K, Callan B. A descriptive systematic review of salivary therapeutic drug monitoring in neonates and infants. Br J Clin Pharmacol. 2018;84:1089–108. https://doi.org/10.1111/bcp.13553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Drobitch RK, Svensson CK. Therapeutic drug monitoring in saliva. Clin Pharmacokinet. 1992;23:365–79. https://doi.org/10.2165/00003088-199223050-00003.

    Article  CAS  PubMed  Google Scholar 

  37. Idkaidek N, Arafat T. Saliva versus plasma pharmacokinetics: theory and application of a salivary excretion classification system. Mol Pharm. 2012;9:2358–63. https://doi.org/10.1021/mp300250r.

    Article  CAS  PubMed  Google Scholar 

  38. Idkaidek NM. Interplay of biopharmaceutics, biopharmaceutics drug disposition and salivary excretion classification systems. Saudi Pharm J. 2014;22:79–81. https://doi.org/10.1016/j.jsps.2013.02.002.

    Article  PubMed  Google Scholar 

  39. Dobson NR, Liu X, Rhein LM, Darnall RA, Corwin MJ, McEntire BL, et al. Salivary caffeine concentrations are comparable to plasma concentrations in preterm infants receiving extended caffeine therapy. Br J Clin Pharmacol. 2016;82:754–61. https://doi.org/10.1111/bcp.13001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chang H-P, Anderson GC, Wood CE. Feasible and valid saliva collection for cortisol in transitional newborn infants. Nurs Res. 1995;44:117–9.

    Article  CAS  PubMed  Google Scholar 

  41. Gabrielsson JL, Johansson P, Bondesson U, Karlsson M, Paalzow LK. Analysis of pethidine disposition in the pregnant rat by means of a physiological flow model. J Pharmacokinet Biopharm. 1986;14:381–95. https://doi.org/10.1007/BF01059198.

    Article  CAS  PubMed  Google Scholar 

  42. Kaiko RF, Foley KM, Grabinski PY, Heidrich G, Rogers AG, Inturrisi CE, et al. Central nervous system excitatory effects of meperidine in cancer patients. Ann Neurol. 1983;13:180–5. https://doi.org/10.1002/ana.410130213.

    Article  CAS  PubMed  Google Scholar 

  43. Mather LE, Meffin PJ. Clinical pharmacokinetics pethidine. Clin Pharmacokinet. 1978;3:352–68. https://doi.org/10.2165/00003088-197803050-00002.

    Article  CAS  PubMed  Google Scholar 

  44. Pokela M-L, Olkkola KT, Koivisto M, Ryhänen P. Pharmacokinetics and pharmacodynamics of intravenous meperidine in neonates and infants. Clin Pharmacol Ther. 1992;52:342–9. https://doi.org/10.1038/clpt.1992.153.

    Article  CAS  PubMed  Google Scholar 

  45. Guay D, Meatherall R, Chalmers J, Grahame G. Cimetidine alters pethidine disposition in man. Br J Clin Pharmacol. 1984;18:907–14. https://doi.org/10.1111/j.1365-2125.1984.tb02563.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lazebnik N, Kuhnert BR, Carr PC, Brashear WT, Syracuse CD, Mann LI. Intravenous, deltoid, or gluteus administration of meperidine during labor? Am J Obstet Gynecol. 1989;160:1184–9. https://doi.org/10.1016/0002-9378(89)90185-3.

    Article  CAS  PubMed  Google Scholar 

  47. Allegaert K, van den Anker J. Ontogeny of phase I metabolism of drugs. J Clin Pharmacol. 2019;59:S33–41. https://doi.org/10.1002/jcph.1483.

    Article  CAS  PubMed  Google Scholar 

  48. Bayer Technology Services GmbH. Open Systems Pharmacology Suite. 2019. https://docs.open-systems-pharmacology.org/working-with-pk-sim/pk-sim-documentation. Accessed 10 Jun 2021.

  49. Dallmann A, Ince I, Coboeken K, Eissing T, Hempel G. A physiologically based pharmacokinetic model for pregnant women to predict the pharmacokinetics of drugs metabolized via several enzymatic pathways. Clin Pharmacokinet. 2018;57:749–68. https://doi.org/10.1007/s40262-017-0594-5.

    Article  CAS  PubMed  Google Scholar 

  50. Nation RL. Meperidine binding in maternal and fetal plasma. Clin Pharmacol Ther. 1981;29:472–9. https://doi.org/10.1038/clpt.1981.65.

    Article  CAS  PubMed  Google Scholar 

  51. Chan K, Tse J, Jennings F, Orme MLE. Pharmacokinetics of low-dose intravenous pethidine in patients with renal dysfunction. J Clin Pharmacol. 1987;27:516–22. https://doi.org/10.1002/j.1552-4604.1987.tb03059.x.

    Article  CAS  PubMed  Google Scholar 

  52. Thelen K, Coboeken K, Willmann S, Burghaus R, Dressman JB, Lippert J. Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, part 1: oral solutions. J Pharm Sci. 2011;100:5324–45. https://doi.org/10.1002/jps.22726.

    Article  CAS  PubMed  Google Scholar 

  53. Cao J, Du Y, Wang YJ, Wu B, Jia J, Wei ZW, et al. Pharmacokinetics of meperidine (pethidine) in rabbit oral fluid: correlation with plasma concentrations after controlled administration. Pharmazie. 2018;73:324–8. https://doi.org/10.1691/ph.2018.8014.

    Article  CAS  PubMed  Google Scholar 

  54. Björkman S. Reduction and lumping of physiologically based pharmacokinetic models: prediction of the disposition of fentanyl and pethidine in humans by successively simplified models. J Pharmacokinet Pharmacodyn. 2003;30:285–307. https://doi.org/10.1023/A:1026194618660.

    Article  PubMed  Google Scholar 

  55. Davis NR, Mapleson WW. A physiological model for the distribution of injected agents, with special reference to pethidine. Br J Anaesth. 1993;70:248–58. https://doi.org/10.1093/bja/70.3.248.

    Article  CAS  PubMed  Google Scholar 

  56. Tomson G, Garle R, Thalme B, Nisell H, Nylund L, Rane A. Maternal kinetics and transplacental passage of pethidine during labour. Br J Clin Pharmacol. 1982;13:653–9. https://doi.org/10.1111/j.1365-2125.1982.tb01432.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nestorov I. Whole-body physiologically based pharmacokinetic models. Expert Opin Drug Metab Toxicol. 2007;3:235–49. https://doi.org/10.1517/17425255.3.2.235.

    Article  CAS  PubMed  Google Scholar 

  58. Abduljalil K, Pan X, Pansari A, Jamei M, Johnson TN. Preterm physiologically based pharmacokinetic model. Part II: applications of the model to predict drug pharmacokinetics in the preterm population. Clin Pharmacokinet. 2019. https://doi.org/10.1007/s40262-019-00827-4.

    Article  PubMed  Google Scholar 

  59. Abduljalil K, Pan X, Pansari A, Jamei M, Johnson TN. A preterm physiologically based pharmacokinetic model. Part I: physiological parameters and model building. Clin Pharmacokinet. 2020;59:485–500. https://doi.org/10.1007/s40262-019-00825-6.

    Article  PubMed  Google Scholar 

  60. Claassen K, Thelen K, Coboeken K, Gaub T, Lippert J, Allegaert K, et al. Development of a physiologically-based pharmacokinetic model for preterm neonates: evaluation with in vivo data. Curr Pharm Des. 2015;21:5688–98. https://doi.org/10.2174/1381612821666150901110533.

    Article  CAS  PubMed  Google Scholar 

  61. Dallmann A, Solodenko J, Ince I, Eissing T. Applied concepts in PBPK modeling: how to extend an open systems pharmacology model to the special population of pregnant women. CPT Pharmacometrics Syst Pharmacol. 2018;7:419–31. https://doi.org/10.1002/psp4.12300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dallmann A, Ince I, Meyer M, Willmann S, Eissing T, Hempel G. Gestation-specific changes in the anatomy and physiology of healthy pregnant women: an extended repository of model parameters for physiologically based pharmacokinetic modeling in pregnancy. Clin Pharmacokinet. 2017;56:1303–30. https://doi.org/10.1007/s40262-017-0539-z.

    Article  CAS  PubMed  Google Scholar 

  63. Liu XI, Momper JD, Rakhmanina NY, Green DJ, Burckart GJ, Cressey TR, et al. Physiologically based pharmacokinetic modeling framework to predict neonatal pharmacokinetics of transplacentally acquired emtricitabine, dolutegravir, and raltegravir. Clin Pharmacokinet. 2021;60:795–809. https://doi.org/10.1007/s40262-020-00977-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Willmann S, Höhn K, Edginton A, Sevestre M, Solodenko J, Weiss W, et al. Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn. 2007;34:401–31. https://doi.org/10.1007/s10928-007-9053-5.

    Article  PubMed  Google Scholar 

  65. Szeto HH, Inturrisi CE, Houde R, Saal S, Cheigh J, Reidenberg MM. Accumulation of normeperidine, an active metabolite of meperidine, in patients with renal failure or cancer. Ann Intern Med. 1977;86:738–41. https://doi.org/10.7326/0003-4819-86-6-738.

    Article  CAS  PubMed  Google Scholar 

  66. Stone P, Macintyre P, Jarvis D. Norpethidine toxicity and patient controlled analgesia. BJA Br J Anaesthesia. 1993;71:738–40. https://doi.org/10.1093/bja/71.5.738.

    Article  CAS  Google Scholar 

  67. Hagmeyer KO, Mauro LS, Mauro VF. Meperidine-related seizures associated with patient-controlled analgesia pumps. Ann Pharmacother. 1993;27:29–32. https://doi.org/10.1177/106002809302700106.

    Article  CAS  PubMed  Google Scholar 

  68. Hamad NI, Awad R, Salem AF, Arafat T. Pethidine level in Jordanian women and their newborns during labor after a single intravenous dose. Int J Clin Anesthesiol. 2014;2:1032.

    Google Scholar 

  69. Husemeyer R, Cummings A, Rosankiewicz J, Davenport H. A study of pethidine kinetics and analgesia in women in labour following intravenous, intramuscular and epidural administration. Br J Clin Pharmacol. 1982;13:171–6. https://doi.org/10.1111/j.1365-2125.1982.tb01352.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Holmberg L, Odar-Cederlöf I, Boréus LO, Heyner L, Ehrnebo M. Comparative disposition of pethidine and norpethidine in old and young patients. Eur J Clin Pharmacol. 1982;22:175–9. https://doi.org/10.1007/BF00542464.

    Article  CAS  PubMed  Google Scholar 

  71. Payne K. Epidural and intramuscular pethidine-a pharmacokinetic study. S Afr Med J. 1983;63:193–6.

    CAS  PubMed  Google Scholar 

  72. Boréus LO, Sköldefors E, Ehrnebo M. Appearance of pethidine and norpethidine in cerebrospinal fluid of man following intramuscular injection of pethidine. Acta Anaesthesiol Scand. 1983;27:222–5. https://doi.org/10.1111/j.1399-6576.1983.tb01939.x.

    Article  PubMed  Google Scholar 

  73. Ramírez J, Innocenti F, Schuetz EG, Flockhart DA, Relling MV, Santucci R, et al. CYP2B6, CYP3A4, and CYP2C19 are responsible for the in vitro N-demethylation of meperidine in human liver microsomes. Drug Metab Dispos. 2004;32:930–6.

    PubMed  Google Scholar 

  74. Diestelhorst C, Boos J, McCune JS, Russell J, Kangarloo SB, Hempel G. Physiologically based pharmacokinetic modelling of Busulfan: a new approach to describe and predict the pharmacokinetics in adults. Cancer Chemother Pharmacol. 2013;72:991–1000. https://doi.org/10.1007/s00280-013-2275-x.

    Article  CAS  PubMed  Google Scholar 

  75. Hughes JH, Upton RN, Reuter SE, Rozewski DM, Phelps MA, Foster DJ. Development of a physiologically based pharmacokinetic model for intravenous lenalidomide in mice. Cancer Chemother Pharmacol. 2019;84:1073–87. https://doi.org/10.1007/s00280-019-03941-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Alsmadi MM, Al Eitan LN, Idkaidek NM, Alzoubi KH. The development of a PBPK model for atomoxetine using levels in plasma, saliva and brain extracellular fluid in patients with normal and deteriorated kidney function. CNSNDDT. 2022;21:704–16. https://doi.org/10.2174/1871527320666210621102437.

    Article  CAS  Google Scholar 

  77. Alsmadi MM, Al-Daoud NM, Jaradat MM, Alzughoul SB, Abu Kwiak AD, Abu Laila SS, et al. Physiologically-based pharmacokinetic model for alectinib, ruxolitinib, and panobinostat in the presence of cancer, renal impairment, and hepatic impairment. Biopharm Drug Disposition. 2021;42:263–84. https://doi.org/10.1002/bdd.2282.

    Article  CAS  Google Scholar 

  78. Wong YC, Centanni M, de Lange EC. Physiologically based modeling approach to predict dopamine D2 receptor occupancy of antipsychotics in brain: translation from rat to human. J Clin Pharmacol. 2019;59:731–47. https://doi.org/10.1002/jcph.1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hassan HE, Mercer SL, Cunningham CW, Coop A, Eddington ND. Evaluation of the P-glycoprotein (Abcb1) affinity status of a series of morphine analogs: comparative study with meperidine analogs to identify opioids with minimal P-glycoprotein interactions. Int J Pharm. 2009;375:48–54. https://doi.org/10.1016/j.ijpharm.2009.03.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kramer WG, Gross DR, Medlock C. Contribution of the lung to total body clearance of meperidine in the dog. J Pharm Sci. 1985;74:569–71. https://doi.org/10.1002/jps.2600740517.

    Article  CAS  PubMed  Google Scholar 

  81. Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95:1238–57. https://doi.org/10.1002/jps.20502.

    Article  CAS  PubMed  Google Scholar 

  82. Alsmadi MM. Physiologically based pharmacokinetic (PBPK) model of ivermectin (IVM). 2014. https://www.proquest.com/openview/6b2ac6600b76fb8b784476e77e0a5a61/1.pdf?pq-origsite=gscholar&cbl=18750. Accessed 26 Feb 2023.

  83. Sweeney RE, Langenberg JP, Maxwell DM. A physiologically based pharmacokinetic (PB/PK) model for multiple exposure routes of soman in multiple species. Arch Toxicol. 2006;80:719–31. https://doi.org/10.1007/s00204-006-0114-0.

    Article  CAS  PubMed  Google Scholar 

  84. Willmann S, Thelen K, Becker C, Dressman JB, Lippert J. Mechanism-based prediction of particle size-dependent dissolution and absorption: cilostazol pharmacokinetics in dogs. Eur J Pharm Biopharm. 2010;76:83–94. https://doi.org/10.1016/j.ejpb.2010.06.003.

    Article  CAS  PubMed  Google Scholar 

  85. Hebert MF, Easterling T, Kirby B, Carr D, Buchanan M, Rutherford T, et al. Effects of pregnancy on CYP3A and P-glycoprotein activities as measured by disposition of midazolam and digoxin: a University of Washington specialized center of research study. Clin Pharmacol Ther. 2008;84:248–53. https://doi.org/10.1038/clpt.2008.1.

    Article  CAS  PubMed  Google Scholar 

  86. Ganguly S, Edginton AN, Gerhart JG, Cohen-Wolkowiez M, Greenberg RG, Gonzalez D, et al. Physiologically based pharmacokinetic modeling of meropenem in preterm and term infants. Clin Pharmacokinet. 2021;60:1591–604. https://doi.org/10.1007/s40262-021-01046-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Maharaj AR, Gonzalez D, Cohen-Wolkowiez M, Hornik CP, Edginton AN. Improving pediatric protein binding estimates: an evaluation of α1-acid glycoprotein maturation in healthy and infected subjects. Clin Pharmacokinet. 2018;57:577–89. https://doi.org/10.1007/s40262-017-0576-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Patterson KB, Dumond JB, Prince HA, Jenkins AJ, Scarsi KK, Wang R, et al. Protein binding of lopinavir and ritonavir during four phases of pregnancy: implications for treatment guidelines. J Acquir Immune Defic Syndr. 2013;63:51. https://doi.org/10.1097/QAI.0b013e31827fd47e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. La Rosa C, Mather L, Morgan D. Pethidine binding in plasma: effects of methodological variables. Br J Clin Pharmacol. 1984;17:411–5. https://doi.org/10.1111/j.1365-2125.1984.tb02365.x.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Morgan D, Moore G, Thomas J, Triggs E. Disposition of meperidine in pregnancy. Clin Pharmacol Ther. 1978;23:288–95. https://doi.org/10.1002/cpt1978233288.

    Article  CAS  PubMed  Google Scholar 

  91. Rowland M, Tozer TN. Clinical pharmacokinetics and pharmacodynamics: concepts and applications. 5th ed. Philadelphia: Lippincott Williams and Wilkins; 2005.

    Google Scholar 

  92. Couto N, Al-Majdoub ZM, Achour B, Wright PC, Rostami-Hodjegan A, Barber J. Quantification of proteins involved in drug metabolism and disposition in the human liver using label-free global proteomics. Mol Pharm. 2019;16:632–47. https://doi.org/10.1021/acs.molpharmaceut.8b00941.

    Article  CAS  PubMed  Google Scholar 

  93. Soetaert K, Petzoldt T. Inverse modelling, sensitivity and monte Carlo analysis in R using package FME. J Stat Softw. 2010;33:1–28. https://doi.org/10.18637/jss.v033.i03.

    Article  Google Scholar 

  94. Hornik CP, Wu H, Edginton AN, Watt K, Cohen-Wolkowiez M, Gonzalez D. Development of a pediatric physiologically-based pharmacokinetic model of clindamycin using opportunistic pharmacokinetic data. Clin Pharmacokinet. 2017;56:1343–53. https://doi.org/10.1007/s40262-017-0525-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Do Jones R, Jones HM, Rowland M, Gibson CR, Yates JW, Chien JY, et al. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 2: comparative assessment of prediction methods of human volume of distribution. J Pharm Sci. 2011;100:4074–89. https://doi.org/10.1002/9780470921920.edm049.

    Article  PubMed  Google Scholar 

  96. Sampson MR, Frymoyer A, Rattray B, Cotten CM, Smith B, Capparelli E, et al. Predictive performance of a gentamicin population pharmacokinetic model in neonates receiving full-body hypothermia. Ther Drug Monit. 2014;36:584–9. https://doi.org/10.1097/FTD.0000000000000056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Heiskanen T, Langel K, Gunnar T, Lillsunde P, Kalso EA. Opioid concentrations in oral fluid and plasma in cancer patients with pain. J Pain Symptom Manage. 2015;50:524–32. https://doi.org/10.1016/j.jpainsymman.2014.09.004.

    Article  PubMed  Google Scholar 

  98. Bista SR, Haywood A, Norris R, Good P, Tapuni A, Lobb M, et al. Saliva versus plasma for pharmacokinetic and pharmacodynamic studies of fentanyl in patients with cancer. Clin Ther. 2015;37:2468–75. https://doi.org/10.1016/j.clinthera.2015.09.002.

    Article  CAS  PubMed  Google Scholar 

  99. Gesseck AM, Poklis JL, Wolf CE, Xu J, Bashir A, Hendricks-Muñoz KD, et al. A case study evaluating the efficacy of an ad hoc hospital collection device for fentanyl in infant oral fluid. J Anal Toxicol. 2020;44:741–6. https://doi.org/10.1093/jat/bkaa069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Alsmadi MM, Alfarah MQ, Albderat J, Alsalaita G, AlMardini R, Hamadi S, et al. The development of a population physiologically based pharmacokinetic model for mycophenolic mofetil and mycophenolic acid in humans using data from plasma, saliva, and kidney tissue. Biopharm Drug Disposition. 2019;40:325–40. https://doi.org/10.1002/bdd.2206.

    Article  CAS  Google Scholar 

  101. Wiener PC, Hogg MI, Rosen M. Neonatal respiration, feeding and neurobehavioural state. Effects of intrapartum bupivacaine, pethidine and pethidine reversed by naloxone. Anaesthesia. 1979;34:996–1004. https://doi.org/10.1111/j.1365-2044.1979.tb06247.x.

    Article  CAS  PubMed  Google Scholar 

  102. Nissen E, Lilja G, Matthiesen A-S, Ransjo-Arvidsson A-B, Uvnas-Moberg K, Widstrom A-M. Effects of maternal pethidine on infants’ developing breast feeding behaviour. Acta Paediatr. 1995;84:140–5. https://doi.org/10.1111/j.1651-2227.1995.tb13596.x.

    Article  CAS  PubMed  Google Scholar 

  103. O’Connor A, Schug SA, Cardwell H. A comparison of the efficacy and safety of morphine and pethidine as analgesia for suspected renal colic in the emergency setting. Emerg Med J. 2000;17:261–4. https://doi.org/10.1136/emj.17.4.261.

    Article  CAS  Google Scholar 

  104. Dallmann A, Himstedt A, Solodenko J, Ince I, Hempel G, Eissing T. Integration of physiological changes during the postpartum period into a PBPK framework and prediction of amoxicillin disposition before and shortly after delivery. J Pharmacokinet Pharmacodyn. 2020;47:341–59. https://doi.org/10.1007/s10928-020-09706-z.

    Article  CAS  PubMed  Google Scholar 

  105. Pavek P, Ceckova M, Staud F. Variation of drug kinetics in pregnancy. Curr Drug Metab. 2009;10:520–9. https://doi.org/10.2174/138920009788897993.

    Article  CAS  PubMed  Google Scholar 

  106. Edwards D, Svensson CK, Visco JP, Lalka D. Clinical Pharmacokinetics of Pethidine: 1982. Clin Pharmacokinet. 1982;7:421–33. https://doi.org/10.2165/00003088-198207050-00003.

    Article  CAS  PubMed  Google Scholar 

  107. Austin K, Stapleton J, Mather L. Pethidine clearance during continuous intravenous infusions in postoperative patients. Br J Clin Pharmacol. 1981;11:25–30. https://doi.org/10.1111/j.1365-2125.1981.tb01097.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kiem S, Schentag JJ. Interpretation of antibiotic concentration ratios measured in epithelial lining fluid. Antimicrob Agents Chemother. 2008;52:24–36. https://doi.org/10.1128/AAC.00133-06.

    Article  CAS  PubMed  Google Scholar 

  109. Aljayyoussi G, Rajoli R, Pertinez H, Pennington S, Hong WD, O’Neill P, et al. Modelling of systemic versus pulmonary chloroquine exposure in man for COVID-19 dose selection. medRxiv. 2020. https://doi.org/10.1101/2020.04.24.20078741.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Schüller M, Tran KTT, Øiestad EL, Pedersen-Bjergaard S. Membrane-based liquid-phase microextraction of basic pharmaceuticals—a study on the optimal extraction window. J Chromatogr A. 2022;1664: 462769. https://doi.org/10.1016/j.chroma.2021.462769.

    Article  CAS  PubMed  Google Scholar 

  111. DrugBank. Meperidine- Compound summary. 1992. https://go.drugbank.com/drugs/DB00454. Accessed 26 May 2022.

  112. Barter ZE, Chowdry JE, Harlow JR, Snawder JE, Lipscomb JC, Rostami-Hodjegan A. Covariation of human microsomal protein per gram of liver with age: absence of influence of operator and sample storage may justify interlaboratory data pooling. Drug Metab Dispos. 2008;36:2405–9. https://doi.org/10.1124/dmd.108.021311.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Jordan University of Science and Technology (Irbid, Jordan) and the University of Petra (Amman, Jordan) for all the facilities and support provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo’tasem M. Alsmadi.

Ethics declarations

Funding

This study received no funding.

Conflicts of interest

Mo’tasem M. Alsmadi and Nasir Idkaidek declare that they have no conflict of interest

Availability of data and material

All of the used data in this work were included in the article.

Code availability

The PK-Sim files used in this work can be provided upon request via email.

Author contributions

MMA had substantial contributions to the conception and design of the work; the acquisition, analysis, and interpretation of data, and the drafting of the work. MMA and NI were involved in revising the work critically for important intellectual content. All authors provided final approval of the version to be published and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsmadi, M.M., Idkaidek, N. The Analysis of Pethidine Pharmacokinetics in Newborn Saliva, Plasma, and Brain Extracellular Fluid After Prenatal Intrauterine Exposure from Pregnant Mothers Receiving Intramuscular Dose Using PBPK Modeling. Eur J Drug Metab Pharmacokinet 48, 281–300 (2023). https://doi.org/10.1007/s13318-023-00823-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-023-00823-x

Navigation