Skip to main content
Log in

Comparison of the Pharmacokinetic Profiles of Trientine Tetrahydrochloride and Trientine Dihydrochloride in Healthy Subjects

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Wilson disease (WD) is an autosomal recessive inherited disorder of copper metabolism. Chelation of excessive copper is recommended but data on the pharmacokinetics of trientine are limited. The aim of this study was to compare the pharmacokinetics of a new trientine tetrahydrochloride formulation (TETA 4HCl) with those of an established trientine dihydrochloride (TETA 2HCl) salt.

Methods

A randomised single-centre crossover study to evaluate the pharmacokinetics, safety and tolerability of two different oral formulations of trientine (TETA 4HCl tablets vs TETA 2HCl capsules) in 23 healthy adult subjects receiving a single dose equivalent to 600 mg of trientine base was performed.

Results

Following oral administration, the median time to reach maximum plasma concentration (Tmax) was 2.00 h (TETA 4HCl) and 3.00 h (TETA 2HCl). The rate (maximum plasma concentration [Cmax]) and extent (area under the plasma concentration-time curve from time zero to infinity [AUC0–∞]) of absorption of the active moiety, trientine, were greater (by approximately 68% and 56%, respectively) for TETA 4HCl than for the TETA 2HCl formulation. The two formulations presented a similar terminal elimination rate (λz) and a similar terminal half-life (t½) for trientine. Differences between TETA 4HCl and TETA 2HCl in the levels of the two main mono- and diacetylated metabolites were less than seen for trientine. For both tested formulations, healthy male volunteers demonstrated higher trientine plasma levels but lower mono- and diacetylated metabolite levels compared with females, with no sex differences in terminal half-life (t½) observed. Single oral doses of both formulations were safe and well tolerated.

Conclusions

Compared with an identical dose of a TETA 2HCl formulation, the TETA 4HCl formulation provided more rapid absorption of trientine and greater systemic exposure in healthy subjects.

Clinical Trials Number EudraCT # 2015-002199-25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Czlonkowska A, Litwin T, Dusek P, Ferenci P, Lutsenko S, Medici V, Rybakowski JK, Weiss KH, Schilsky ML. Wilson disease. Nat Rev Dis Primers. 2018;4(1):21. https://doi.org/10.1038/s41572-018-0018-3.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mulligan C, Bronstein JM. Wilson disease: an overview and approach to management. Neurol Clin. 2020;38(2):417–32. https://doi.org/10.1016/j.ncl.2020.01.005.

    Article  PubMed  Google Scholar 

  3. Roberts EA, Schilsky ML, Division of Gastroenterology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada. A practice guideline on Wilson disease. Hepatology. 2003;37(6):1475–92. https://doi.org/10.1053/jhep.2003.50252.

  4. Ala A, Walker AP, Ashkan K, Dooley JS, Schilsky ML. Wilson’s disease. Lancet. 2007;369(9559):397–408. https://doi.org/10.1016/S0140-6736(07)60196-2.

    Article  CAS  PubMed  Google Scholar 

  5. Sandahl TD, Laursen TL, Munk DE, Vilstrup H, Weiss KH, Ott P. The prevalence of Wilson’s disease: an update. Hepatology. 2020;71(2):722–32. https://doi.org/10.1002/hep.30911.

    Article  Google Scholar 

  6. Gao J, Brackley S, Mann JP. The global prevalence of Wilson disease from next-generation sequencing data. Genet Med. 2019;21(5):1155–63. https://doi.org/10.1038/s41436-018-0309-9.

    Article  CAS  PubMed  Google Scholar 

  7. Poujois A, Woimant F, Samson S, Chaine P, Girardot-Tinant N, Tuppin P. Characteristics and prevalence of Wilson’s disease: a 2013 observational population-based study in France. Clin Res Hepatol Gastroenterol. 2018;42(1):57–63. https://doi.org/10.1016/j.clinre.2017.05.011.

    Article  PubMed  Google Scholar 

  8. Medici V, Weiss KH. Genetic and environmental modifiers of Wilson disease. Handb Clin Neurol. 2017;142:35–41. https://doi.org/10.1016/B978-0-444-63625-6.00004-5.

    Article  PubMed  Google Scholar 

  9. Walshe JM, Yealland M. Wilson’s disease: the problem of delayed diagnosis. J Neurol Neurosurg Psychiatry. 1992;55(8):692–6. https://doi.org/10.1136/jnnp.55.8.692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ala A, Borjigin J, Rochwarger A, Schilsky M. Wilson disease in septuagenarian siblings: raising the bar for diagnosis. Hepatology. 2005;41(3):668–70. https://doi.org/10.1002/hep.20601.

    Article  PubMed  Google Scholar 

  11. Ferenci P, Czlonkowska A, Merle U, Ferenc S, Gromadzka G, Yurdaydin C, Vogel W, Bruha R, Schmidt HT, Stremmel W. Late-onset Wilson’s disease. Gastroenterology. 2007;132(4):1294–8. https://doi.org/10.1053/j.gastro.2007.02.057.

    Article  CAS  PubMed  Google Scholar 

  12. Gunther MR, Hanna PM, Mason RP, Cohen MS. Hydroxyl radical formation from cuprous ion and hydrogen peroxide: a spin-trapping study. Arch Biochem Biophys. 1995;316(1):515–22. https://doi.org/10.1006/abbi.1995.1068.

    Article  CAS  PubMed  Google Scholar 

  13. Ferenci P, Caca K, Loudianos G, Mieli-Vergani G, Tanner S, Sternlieb I, Schilsky M, Cox D, Berr F. Diagnosis and phenotypic classification of Wilson disease. Liver Int. 2003;23(3):139–42. https://doi.org/10.1034/j.1600-0676.2003.00824.x.

    Article  PubMed  Google Scholar 

  14. Min HK, Kapoor A, Fuchs M, Mirshahi F, Zhou H, Maher J, Kellum J, Warnick R, Contos MJ, Sanyal AJ. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 2012;15(5):665–74. https://doi.org/10.1016/j.cmet.2012.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stremmel W, Merle U, Weiskirchen R. Clinical features of Wilson disease. Ann Transl Med. 2019;7(Suppl 2):S61. https://doi.org/10.21037/atm.2019.01.20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Paris I, Dagnino-Subiabre A, Marcelain K, Bennett LB, Caviedes P, Caviedes R, Azar CO, Segura-Aguilar J. Copper neurotoxicity is dependent on dopamine-mediated copper uptake and one-electron reduction of aminochrome in a rat substantia nigra neuronal cell line. J Neurochem. 2001;77(2):519–29. https://doi.org/10.1046/j.1471-4159.2001.00243.x.

    Article  CAS  PubMed  Google Scholar 

  17. Dusek P, Litwin T, Czlonkowska A. Neurologic impairment in Wilson disease. Ann Transl Med. 2019;7(Suppl 2):S64. https://doi.org/10.21037/atm.2019.02.43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Walshe JM. Wilson’s disease; new oral therapy. Lancet. 1956;270(6906):25–6. https://doi.org/10.1016/s0140-6736(56)91859-1.

    Article  CAS  PubMed  Google Scholar 

  19. Weiss KH, Thurik F, Gotthardt DN, Schafer M, Teufel U, Wiegand F, Merle U, Ferenci-Foerster D, Maieron A, Stauber R, Zoller H, Schmidt HH, Reuner U, Hefter H, Trocello JM, Houwen RH, Ferenci P, Stremmel W, EUROWILSON Consortium. Efficacy and safety of oral chelators in treatment of patients with Wilson disease. Clin Gastroenterol Hepatol. 2013;11(8):1028–35.E2. https://doi.org/10.1016/j.cgh.2013.03.012.

  20. Litwin T, Dziezyc K, Karlinski M, Chabik G, Czepiel W, Czlonkowska A. Early neurological worsening in patients with Wilson’s disease. J Neurol Sci. 2015;355(1–2):162–7. https://doi.org/10.1016/j.jns.2015.06.010.

    Article  PubMed  Google Scholar 

  21. Czlonkowska A. Myasthenia syndrome during penicillamine treatment. Br Med J. 1975;2(5973):726–7. https://doi.org/10.1136/bmj.2.5973.726-a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Becuwe C, Dalle S, Ronger-Savle S, Skowron F, Balme B, Kanitakis J, Thomas L. Elastosis perforans serpiginosa associated with pseudo-pseudoxanthoma elasticum during treatment of Wilson’s disease with penicillamine. Dermatology. 2005;210(1):60–3. https://doi.org/10.1159/000081487.

    Article  PubMed  Google Scholar 

  23. Walshe JM. Management of penicillamine nephropathy in Wilson’s disease: a new chelating agent. Lancet. 1969;2(7635):1401–2. https://doi.org/10.1016/s0140-6736(69)90940-4.

    Article  CAS  PubMed  Google Scholar 

  24. Walshe JM. Triethylene tetramine. Lancet. 1970;2(7664):154. https://doi.org/10.1016/s0140-6736(70)92740-6.

    Article  CAS  PubMed  Google Scholar 

  25. Scheinberg IH, Jaffe ME, Sternlieb I. The use of trientine in preventing the effects of interrupting penicillamine therapy in Wilson’s disease. N Engl J Med. 1987;317(4):209–13. https://doi.org/10.1056/NEJM198707233170405.

    Article  CAS  PubMed  Google Scholar 

  26. Roberts EA. Update on the diagnosis and management of Wilson disease. Curr Gastroenterol Rep. 2018;20(12):56. https://doi.org/10.1007/s11894-018-0660-7.

    Article  PubMed  Google Scholar 

  27. Kodama H, Murata Y, Iitsuka T, Abe T. Metabolism of administered triethylene tetramine dihydrochloride in humans. Life Sci. 1997;61(9):899–907. https://doi.org/10.1016/s0024-3205(97)00592-4.

    Article  CAS  PubMed  Google Scholar 

  28. Pfeiffenberger J, Kruse C, Mutch P, Harker A, Weiss KH. The steady state pharmacokinetics of trientine in Wilson disease patients. Eur J Clin Pharmacol. 2018;74(6):731–6. https://doi.org/10.1007/s00228-018-2424-6.

    Article  CAS  PubMed  Google Scholar 

  29. Lu J, Poppitt SD, Othman AA, Sunderland T, Ruggiero K, Willett MS, Diamond LE, Garcia WD, Roesch BG, Cooper GJ. Pharmacokinetics, pharmacodynamics, and metabolism of triethylenetetramine in healthy human participants: an open-label trial. J Clin Pharmacol. 2010;50(6):647–58. https://doi.org/10.1177/0091270009349379.

    Article  CAS  PubMed  Google Scholar 

  30. Lu J. Triethylenetetramine pharmacology and its clinical applications. Mol Cancer Ther. 2010;9(9):2458–67. https://doi.org/10.1158/1535-7163.MCT-10-0523.

    Article  CAS  PubMed  Google Scholar 

  31. Dogterom P, Gerrits M, Abd-Elaziz K, van Scheppingen D, Kruse C. A study to determine the potential effects of dissolution rate and food on the pharmacokinetics of trientine dihydrochloride following single oral administrations in healthy subjects (Poster #1965). Hepatology. 2019;70(S1):987.

    Google Scholar 

  32. Miyazaki K, Kishino S, Kobayashi M, Arashima S, Matsumoto S, Arita T. Determination of triethylenetetramine in plasma of patients by high-performance liquid chromatography. Chem Pharm Bull (Tokyo). 1990;38(4):1035–8. https://doi.org/10.1248/cpb.38.1035.

    Article  CAS  Google Scholar 

  33. Cho HY, Blum RA, Sunderland T, Cooper GJ, Jusko WJ. Pharmacokinetic and pharmacodynamic modeling of a copper-selective chelator (TETA) in healthy adults. J Clin Pharmacol. 2009;49(8):916–28. https://doi.org/10.1177/0091270009337939.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Medical writing support (initial draft) was provided by Debbie Jordan (Debbie Jordan Ltd, Hampshire, UK) and funded by Orphalan SA, France. Graphs were produced by Dr. Margreke Brill (QPS, Netherlands).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Omar Farouk Kamlin.

Ethics declarations

Funding

This study was funded by Orphalan.

Conflict of interest

KHW advises for Alexion, Bayer, Chiesi, Eisai, Orphalan, Pfizer, Ultragenyx, Univar, Vivet Therapeutics; KHW received research funding (to the institution) from Alexion, Novartis, Orphalan, Univar; KHW received travel grants from Abbvie, Bayer and Gilead.

Ethics approval

The clinical trial protocol (version 2), as well as the subject information and consent form, version 2, both dated 4 June 2015, were approved by the Independent Ethics Committee (IEC) on 9 June 2015. There were no amendments to the protocol. The competent authority of the Netherlands [Centrale Commissie Mensgebonden Onderzoek (CCMO)] was notified by the IEC according to the Dutch regulations on 4 June 2015.

Consent to participate

Informed written consent was provided by all participating subjects.

Consent to publish

Not applicable.

Availability of data and material

The clinical study report for this pharmacokinetics study, the TRIUMPH study, can be accessed on request from Orphalan.

Code availability

Not applicable.

Author contributions

KHW provided expert consultation on the study findings, presented the study at EASL, and edited and approved the final manuscript. PD designed the study, conducted the study at the study centre, analysed the data, and edited and approved the final manuscript. YC analysed data and approved final manuscript. CT designed the study, analysed the data, and edited and approved the final manuscript. TM provided scientific input into the study outcomes, analysed the data, and edited and approved the final manuscript. BJ provided scientific input into the study outcomes, analysed the data, and edited and approved the final manuscript. NA provided scientific input into the study outcomes, analysed the data, and edited and approved the final manuscript. COFK provided scientific input into the study outcomes, analysed the data, and edited and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiss, K.H., Thompson, C., Dogterom, P. et al. Comparison of the Pharmacokinetic Profiles of Trientine Tetrahydrochloride and Trientine Dihydrochloride in Healthy Subjects. Eur J Drug Metab Pharmacokinet 46, 665–675 (2021). https://doi.org/10.1007/s13318-021-00704-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-021-00704-1

Navigation