Skip to main content
Log in

In Vitro Evaluation of Absorption Characteristics of Peramivir for Oral Delivery

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Peramivir is a novel antiviral agent approved for the treatment of severe influenza. However, the development of oral formulation of peramivir has been severely hurdled by poor bioavailability (human, ≤3%). The present work aims to evaluate oral permeability characteristics of peramivir.

Methods

In vitro gastrointestinal stability, metabolic stability in human intestinal S9 fraction and Caco-2 permeability were performed. The liquid chromatography with tandem mass spectrometric (LC–MS/MS) was used to quantify peramivir in buffer and biological sample. Using GastroPlus™ software, intestinal effective permeability coefficient (P eff) of peramivir was estimated.

Results

Our results indicated that peramivir maintained stability in pH 5.5 and 7.4 buffers, fasted state simulated gastric fluid and fasted state simulated intestinal fluid, and human intestinal S9 fractions. The apparent permeability coefficient (P app) values of peramivir (10 μM) were 3.29 ± 0.73 × 10−7 cm/s in a Caco-2 cell model. In vivo intestinal effective permeability coefficient (P eff) was estimated to be 0.06 × 10−4 cm/s. Furthermore, co-incubating with cyclosporine, mitoxantrone, rifampicin, or paroxetine, the apical (AP) to basolateral (BL) flux of peramivir decreased (p < 0.05). The efflux and influx of peramivir was not significantly affected with co-incubation with verapamil, MK-571, or diclofenac (p > 0.05).

Conclusions

These results revealed that carrier-mediated transports, including OATP1B (organic anion transport 1B) and OCT1 (organic cation transport 1), might be involved in the absorption of peramivir. In conclusion, our results provide insight into the poor oral bioavailability of peramivir. Peramivir can be classified as a BCS-III (high solubility/low permeability) and BDDCS-III high solubility/poor metabolism) drug. The oral bioavailability of peramivir primarily depends on its permeability across cell membranes. Both of passive and active transports are involved in the permeability of peramivir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Neuzil KM, Mellen BG, Wright PF, Mitchel EF Jr, Griffin MR. The effect of influenza on hospitalizations, outpatient visits, and courses of antibiotics in children. N Engl J Med. 2000;342:225–31.

    Article  CAS  PubMed  Google Scholar 

  2. Clercq ED. Strategies in the design of antiviral drugs. Nat Rev Drug Discov. 2002;1:13–25.

    Article  PubMed  Google Scholar 

  3. Moscona A. Neuraminidase inhibitors for influenza. N Engl J Med. 2005;353:1363–73.

    Article  CAS  PubMed  Google Scholar 

  4. Ison MG, Hui DS, Clezy K, O’Neil BJ, Flynt A, Collis PJ, et al. A clinical trial of intravenous peramivir compared with oral oseltamivir for the treatment of seasonal influenza in hospitalized adults. Antivir Ther. 2013;18:651–61.

    Article  CAS  PubMed  Google Scholar 

  5. McLaughlin MM, Skoglund EW, Ison MG. Peramivir: an intravenous neuraminidase inhibitor. Expert Opin Pharmacother. 2015;16:1889–900.

    Article  CAS  PubMed  Google Scholar 

  6. Jain S, Fry AM. Peramivir: another tool for influenza treatment? Clin Infect Dis. 2010;52:707–9.

    Article  Google Scholar 

  7. Kohno S, Kida H, Mizuguchi M, Shimada J. Efficacy and safety of intravenous peramivir for treatment of seasonal influenza virus infection. Antimicrob Agents Chemother. 2010;54:4568–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yun NE, Linde NS, Zacks MA, Barr IG, Hurt AC, Smith JN, et al. Injectable peramivir mitigates disease and promotes survival in ferrets and mice infected with the highly virulent influenza virus, A/Vietnam/1203/04 (H5N1). Virology. 2008;374:198–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baz M, Abed Y, Boivin G. Characterization of drug-resistant recombinant influenza A/H1N1 viruses selected in vitro with peramivir and zanamivir. Antiviral Res. 1999;74:159–62.

    Article  Google Scholar 

  10. Gubareva LV, Webster RG, Hayden FG. Comparison of the activities of zanamivir, oseltamivir, and RWJ-270201 against clinical isolates of influenza virus and neuraminidase inhibitor-resistant variants. Antimicrob Agents Chemother. 2001;45:3403–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sidwell RW, Bailey KW, Morrey JD, Wong MH, Baldwin TJ, Smee DF. Inhibition of influenza virus infections in immunosuppressed mice with orally administered peramivir (BCX-1812). Antiviral Res. 2003;60:17–25.

    Article  CAS  PubMed  Google Scholar 

  12. Li Y, Zhang X, Wang X, Li S, Ruan J, Zhang Z. Quantification of peramivir (a novel anti-influenza drug) in human plasma by hydrophilic interaction chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:933–8.

    Article  CAS  PubMed  Google Scholar 

  13. Yamashita S, Furubayashi T, Kataoka M, Sakane T, Sezaki H, Tokuda H. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur J Pharm Sci. 2000;10:195–204.

    Article  CAS  PubMed  Google Scholar 

  14. Ahmed F, Vyas V, Cornfield A, Goodin S, Ravikumar TS, Rubin EH, Gupta E. In vitro activation of irinotecan to SN-38 by human liver and intestine. Anticancer Res. 1999;19:2067–71.

    CAS  PubMed  Google Scholar 

  15. Gursoy N, Garrigue JS, Razafindratsita A, Lambert G, Benita S. Excipient effects on in vitro cytotoxicity of a novel paclitaxel self-emulsifying drug delivery system. J Pharm Sci. 2003;92:2411–8.

    Article  CAS  PubMed  Google Scholar 

  16. Kimoto T, Takanashi M, Mukai H, Ogawara K, Kimura T, Higaki K. Effect of adrenergic stimulation on drug absorption via passive diffusion in Caco-2 cells. Int J Pharm. 2009;368:31–6.

    Article  CAS  PubMed  Google Scholar 

  17. Mackowiak B, Costales C, Alluri R, Han T, Everett R, Thakker D. Apical membrane transporters in human and mouse intestinal epithelia mediate metformin efflux. AAPS Transporter Workshop 2013; M1023 (2013).

  18. Huang SM, Zhang L. Guidance for industry drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations. USA: FDA; 2012. p. 49.

    Google Scholar 

  19. Zhu C, Jiang L, Chen TM, Hwang KK. A comparative study of artificial membrane permeability assay for high throughput profiling of drug absorption potential. Eur J Med Chem. 2002;37:399–407.

    Article  CAS  PubMed  Google Scholar 

  20. Edward HK, Li D. Drug-like properties: concepts, structure design and methods. Sandiego: Elsevier; 2008. p. 275.

    Google Scholar 

  21. Bjornsson TD, Callaghan JT, Einolf HJ, Fischer V, Gan L, Grimm S, et al. The conduct of in vitro and in vivo drug–drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab Dispos. 2003;31(7):815–32.

    Article  CAS  PubMed  Google Scholar 

  22. Boltz DA, Ilyushina NA, Arnold CS, Babu YS, Webster RG, Govorkova EA. Intramuscularly administered neuraminidase inhibitor peramivir is effective against lethal H5N1 influenza virus in mice. Antiviral Res. 2008;80:150–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lindegardh N, Hanpithakpong W, Phakdeeraj A, Singhasivanon P, Farrar J, Hien TT, et al. Development and validation of a high-throughput zwitterionic hydrophilic interaction liquid chromatography solid-phase extraction-liquid chromatography-tandem mass spectrometry method for determination of the anti-influenza drug peramivir in plasma. J Chromatogr A. 2008;1215:145–51.

    Article  CAS  PubMed  Google Scholar 

  24. Bleasby K, Chauhan S, Brown CD. Characterization of MPP+ secretion across human intestinal Caco-2 cell monolayers: role of P-glycoprotein and a novel Na(+)-dependent organic cation transport mechanism. Br J Pharmacol. 2011;129:619–25.

    Article  Google Scholar 

  25. Duan H, Wang J. Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3. J Pharmacol Exp Ther. 2010;335:743–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hayeshi R, Hilgendorf C, Artursson P, Augustijns P, Brodin B, Dehertogh P, et al. Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. Eur J Pharm Sci. 2008;35:383–96.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng CL, Yu LX, Lee HL, Yang CY, Lue CS, Chou CH. Biowaiver extension potential to BCS Class III high solubility-low permeability drugs: bridging evidence for metformin immediate-release tablet. Eur J Pharm Sci. 2004;22:297–304.

    Article  CAS  PubMed  Google Scholar 

  28. Dahlgren D, Roos C, Sjögren E, Lennernäs H. Direct in vivo human intestinal permeability (P eff) determined with different clinical perfusion and intubation methods. J Pharm Sci. 2015;104:2702–26.

    Article  CAS  PubMed  Google Scholar 

  29. Franek F, Jarlfors A, Larsen F, Holm P, Steffansen B. In vitro solubility, dissolution and permeability studies combined with semi-mechanistic modeling to investigate the intestinal absorption of desvenlafaxine from an immediate- and extended release formulation. Eur J Pharm Sci. 2015;77:303–13.

    Article  CAS  PubMed  Google Scholar 

  30. Bhattachar SN, Perkins EJ, Tan JS, Burns LJ. Effect of gastric pH on the pharmacokinetics of a BCS class II compound in dogs: utilization of an artificial stomach and duodenum dissolution model and GastroPlus™ simulations to predict absorption. J Pharm Sci. 2011;100:4756–65.

    Article  CAS  PubMed  Google Scholar 

  31. Parrott N, Lave T. Applications of physiologically based absorption models in drug discovery and development. Mol Pharm. 2008;5:760–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by Beijing Natural Science Foundation (7162148) and the National Natural Science Foundation of China (81573357, 81102498).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Ethics declarations

Conflict of interest

All of authors (Ying Li, Zhiyuan Wang, Xin Li, Wei Gong, Xiangyang Xie, Yang Yang, Wu Zhong and Aiping Zheng) have no conflicts of interest.

Additional information

W. Zhong and A. Zheng are co-corresponding authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, Z., Li, X. et al. In Vitro Evaluation of Absorption Characteristics of Peramivir for Oral Delivery. Eur J Drug Metab Pharmacokinet 42, 757–765 (2017). https://doi.org/10.1007/s13318-016-0390-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-016-0390-x

Keywords

Navigation