Skip to main content
Log in

A Physiologically Based Pharmacokinetic Model of Amiodarone and its Metabolite Desethylamiodarone in Rats: Pooled Analysis of Published Data

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Amiodarone (AMD) is one of the most effective drugs for rhythm control of atrial fibrillation. The use of AMD is also associated with adverse effects in multiple tissues. Both the parent compound and its major metabolite desethylamiodarone (DEA) contribute to the drug’s therapeutic and toxic action. The present study aimed to build a whole-body physiologically based pharmacokinetic (PBPK) model for AMD and DEA in rats.

Methods

Pharmacokinetic data from multiple studies were collected. Some of the data were pooled together to develop the PBPK model; others were used to evaluate the model. Development of the model also involved in vitro to in vivo extrapolation based on in vitro metabolism data.

Results

The final model consisted of 11 tissue compartments, including therapeutic target organs and those to which AMD and DEA may be harmful. Model simulations were in good agreement with the observed time courses of the drug–metabolite pair in tissues, under various dosing scenarios. The key pharmacokinetic properties of AMD, such as extensive tissue distribution, substantial storage in the fat tissue, and long half-lives in many tissues, were closely reflected.

Conclusion

The developed PBPK model can be regarded as the first step towards a PBPK–pharmacodynamic model that can used to mechanistically evaluate and explain the high adverse event rate and potentially to determine which factors are the primary drives for experiencing an adverse event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kodama I, Kamiya K, Toyama J. Amiodarone: ionic and cellular mechanisms of action of the most promising class III agent. Am J Cardiol. 1999;84(9A):20R–8R.

    Article  CAS  PubMed  Google Scholar 

  2. Kodama I, Kamiya K, Toyama J. Cellular electropharmacology of amiodarone. Cardiovasc Res. 1997;35(1):13–29.

    Article  CAS  PubMed  Google Scholar 

  3. Gill J, Heel RC, Fitton A. Amiodarone. An overview of its pharmacological properties, and review of its therapeutic use in cardiac arrhythmias. Drugs. 1992;43(1):69–110.

    Article  CAS  PubMed  Google Scholar 

  4. Doval HC, et al. Randomised trial of low-dose amiodarone in severe congestive heart failure. Grupo de Estudio de la Sobrevida en la Insuficiencia Cardiaca en Argentina (GESICA). Lancet. 1994;344(8921):493–8.

    Article  CAS  PubMed  Google Scholar 

  5. Singh BN. Antiarrhythmic actions of amiodarone: a profile of a paradoxical agent. Am J Cardiol. 1996;78(4A):41–53.

    Article  CAS  PubMed  Google Scholar 

  6. Greene HL, et al. Toxic and therapeutic effects of amiodarone in the treatment of cardiac arrhythmias. J Am Coll Cardiol. 1983;2(6):1114–28.

    Article  CAS  PubMed  Google Scholar 

  7. Marchlinski FE, et al. Amiodarone pulmonary toxicity. Ann Intern Med. 1982;97(6):839–45.

    Article  CAS  PubMed  Google Scholar 

  8. Lewis JH, et al. Amiodarone hepatotoxicity: prevalence and clinicopathologic correlations among 104 patients. Hepatology. 1989;9(5):679–85.

    Article  CAS  PubMed  Google Scholar 

  9. Martino E, et al. The effects of amiodarone on the thyroid. Endocr Rev. 2001;22(2):240–54.

    CAS  PubMed  Google Scholar 

  10. Charness ME, Morady F, Scheinman MM. Frequent neurologic toxicity associated with amiodarone therapy. Neurology. 1984;34(5):669–71.

    Article  CAS  PubMed  Google Scholar 

  11. Kounis NG, et al. Dose-dependent appearance and disappearance of amiodarone-induced skin pigmentation. Clin Cardiol. 1996;19(7):592–4.

    Article  CAS  PubMed  Google Scholar 

  12. Vorperian VR, et al. Adverse effects of low dose amiodarone: a meta-analysis. J Am Coll Cardiol. 1997;30(3):791–8.

    Article  CAS  PubMed  Google Scholar 

  13. Rotmensch HH, et al. Steady-state serum amiodarone concentrations: relationships with antiarrhythmic efficacy and toxicity. Ann Intern Med. 1984;101(4):462–9.

    Article  CAS  PubMed  Google Scholar 

  14. Sloskey GE. Amiodarone: a unique antiarrhythmic agent. Clin Pharm. 1983;2(4):330–40.

    CAS  PubMed  Google Scholar 

  15. Araki R, et al. Population pharmacokinetic investigation for optimization of amiodarone therapy in Japanese patients. Ther Drug Monit. 2011;33(6):750–6.

    Article  CAS  PubMed  Google Scholar 

  16. Connolly SJ. Evidence-based analysis of amiodarone efficacy and safety. Circulation. 1999;100(19):2025–34.

    Article  CAS  PubMed  Google Scholar 

  17. Kosior DA, Krzykwa A, Postula M. Amiodarone administered orally or intravenously—the same or different drug? Pol Merkur Lekarski. 2013;34(202):183–7.

    PubMed  Google Scholar 

  18. Libersa CC, et al. Dramatic inhibition of amiodarone metabolism induced by grapefruit juice. Br J Clin Pharmacol. 2000;49(4):373–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamreudeewong W, et al. Potentially significant drug interactions of class III antiarrhythmic drugs. Drug Saf. 2003;26(6):421–38.

    Article  CAS  PubMed  Google Scholar 

  20. Fenner KS, et al. Drug-drug interactions mediated through P-glycoprotein: clinical relevance and in vitro-in vivo correlation using digoxin as a probe drug. Clin Pharmacol Ther. 2009;85(2):173–81.

    Article  CAS  PubMed  Google Scholar 

  21. Gerlowski LE, Jain RK. Physiologically based pharmacokinetic modeling: principles and applications. J Pharm Sci. 1983;72(10):1103–27.

    Article  CAS  PubMed  Google Scholar 

  22. Boonpawa R, et al. A physiologically based kinetic (PBK) model describing plasma concentrations of quercetin and its metabolites in rats. Biochem Pharmacol. 2014;89(2):287–99.

    Article  CAS  PubMed  Google Scholar 

  23. Rostami-Hodjegan A. Physiologically based pharmacokinetics joined with in vitro-in vivo extrapolation of ADME: a marriage under the arch of systems pharmacology. Clin Pharmacol Ther. 2012;92(1):50–61.

    Article  CAS  PubMed  Google Scholar 

  24. Barrett JS, et al. Physiologically based pharmacokinetic (PBPK) modeling in children. Clin Pharmacol Ther. 2012;92(1):40–9.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao Y, Hu ZY. Physiologically based pharmacokinetic modelling and in vivo [I]/K(i) accurately predict P-glycoprotein-mediated drug-drug interactions with dabigatran etexilate. Br J Pharmacol. 2014;171(4):1043–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Price PS, et al. Modeling interindividual variation in physiological factors used in PBPK models of humans. Crit Rev Toxicol. 2003;33(5):469–503.

    Article  PubMed  Google Scholar 

  27. Jiang XL, et al. Application of physiologically based pharmacokinetic modeling to predict acetaminophen metabolism and pharmacokinetics in children. CPT Pharmacometrics Syst Pharmacol. 2013;2:e80.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Machavaram KK, et al. A physiologically based pharmacokinetic modeling approach to predict disease-drug interactions: suppression of CYP3A by IL-6. Clin Pharmacol Ther. 2013;94(2):260–8.

    Article  CAS  PubMed  Google Scholar 

  29. Khalil F, Laer S. Physiologically based pharmacokinetic modeling: methodology, applications, and limitations with a focus on its role in pediatric drug development. J Biomed Biotechnol. 2011;2011:907461.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bellen JC, Penglis S, Tsopelas C. Radiolabeling and biodistribution of amiodarone and desethylamiodarone. Nucl Med Biol. 1995;22(7):953–5.

    Article  CAS  PubMed  Google Scholar 

  31. Weir SJ, Ueda CT. Amiodarone pharmacokinetics. II. Disposition kinetics following subchronic administration in rats. Biopharm Drug Dispos. 1987;8(5):449–60.

    Article  CAS  PubMed  Google Scholar 

  32. Wyss PA, Moor MJ, Bickel MH. Single-dose kinetics of tissue distribution, excretion and metabolism of amiodarone in rats. J Pharmacol Exp Ther. 1990;254(2):502–7.

    CAS  PubMed  Google Scholar 

  33. Nanas JN, Mason JW. Pharmacokinetics and regional electrophysiological effects of intracoronary amiodarone administration. Circulation. 1995;91(2):451–61.

    Article  CAS  PubMed  Google Scholar 

  34. Brien JF, et al. Disposition of amiodarone and its proximate metabolite, desethylamiodarone, in the dog for oral administration of single-dose and short-term drug regimens. Drug Metab Dispos. 1990;18(6):846–51.

    CAS  PubMed  Google Scholar 

  35. Riva E, et al. Pharmacokinetics of amiodarone in rats. J Cardiovasc Pharmacol. 1982;4(2):270–5.

    Article  CAS  PubMed  Google Scholar 

  36. Plomp TA, et al. Pharmacokinetics and body distribution of amiodarone and desethylamiodarone in rats after intravenous administration. In Vivo. 1989;3(1):33–47.

    CAS  PubMed  Google Scholar 

  37. Shayeganpour A, et al. The impact of experimental hyperlipidemia on the distribution and metabolism of amiodarone in rat. Int J Pharm. 2008;361(1–2):78–86.

    Article  CAS  PubMed  Google Scholar 

  38. Weir SJ, Ueda CT. Amiodarone pharmacokinetics. I. Acute dose-dependent disposition studies in rats. J Pharmacokinet Biopharm. 1986;14(6):601–13.

    Article  CAS  PubMed  Google Scholar 

  39. Elsherbiny ME, Brocks DR. The effect of CYP1A induction on amiodarone disposition in the rat. J Pharm Sci. 2010;99(1):539–48.

    Article  CAS  PubMed  Google Scholar 

  40. Shayeganpour A, El-Kadi AO, Brocks DR. Determination of the enzyme(s) involved in the metabolism of amiodarone in liver and intestine of rat: the contribution of cytochrome P450 3A isoforms. Drug Metab Dispos. 2006;34(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  41. Campos Moreno E, et al. Population modelling to describe pharmacokinetics of amiodarone in rats: relevance of plasma protein and tissue depot binding. Eur J Pharm Sci. 2007;30(2):190–7.

    Article  CAS  PubMed  Google Scholar 

  42. Shayeganpour A, Hamdy DA, Brocks DR. Pharmacokinetics of desethylamiodarone in the rat after its administration as the preformed metabolite, and after administration of amiodarone. Biopharm Drug Dispos. 2008;29(3):159–66.

    Article  CAS  PubMed  Google Scholar 

  43. Brown RP, et al. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997;13(4):407–84.

    Article  CAS  PubMed  Google Scholar 

  44. Kagan L, et al. Physiologically based pharmacokinetic model of amphotericin B disposition in rats following administration of deoxycholate formulation (Fungizone(R)): pooled analysis of published data. AAPS J. 2011;13(2):255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meno-Tetang GM, et al. Physiologically based pharmacokinetic modeling of FTY720 (2-amino-2[2-(-4-octylphenyl)ethyl]propane-1,3-diol hydrochloride) in rats after oral and intravenous doses. Drug Metab Dispos. 2006;34(9):1480–7.

    Article  CAS  PubMed  Google Scholar 

  46. Hu ZY, Lu J, Zhao Y. A physiologically based pharmacokinetic model of alvespimycin in mice and extrapolation to rats and humans. Br J Pharmacol. 2014;171(11):2778–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Elsherbiny ME, El-Kadi AO, Brocks DR. The metabolism of amiodarone by various CYP isoenzymes of human and rat, and the inhibitory influence of ketoconazole. J Pharm Pharm Sci. 2008;11(1):147–59.

    Article  CAS  PubMed  Google Scholar 

  48. Deng P, et al. Identification of amiodarone metabolites in human bile by ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry. Drug Metab Dispos. 2011;39(6):1058–69.

    Article  CAS  PubMed  Google Scholar 

  49. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.

    Article  CAS  PubMed  Google Scholar 

  50. Latini R, Tognoni G, Kates RE. Clinical pharmacokinetics of amiodarone. Clin Pharmacokinet. 1984;9(2):136–56.

    Article  CAS  PubMed  Google Scholar 

  51. McLure JA, Miners JO, Birkett DJ. Nonspecific binding of drugs to human liver microsomes. Br J Clin Pharmacol. 2000;49(5):453–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Houston JB. Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem Pharmacol. 1994;47(9):1469–79.

    Article  CAS  PubMed  Google Scholar 

  53. Mager DE, et al. Physiologically based pharmacokinetic model for composite nanodevices: effect of charge and size on in vivo disposition. Pharm Res. 2012;29(9):2534–42.

    Article  CAS  PubMed  Google Scholar 

  54. Pertinez H, Chenel M, Aarons L. A physiologically based pharmacokinetic model for strontium exposure in rat. Pharm Res. 2013;30(6):1536–52.

    Article  CAS  PubMed  Google Scholar 

  55. Ohno Y, et al. General framework for the prediction of oral drug interactions caused by CYP3A4 induction from in vivo information. Clin Pharmacokinet. 2008;47(10):669–80.

    Article  CAS  PubMed  Google Scholar 

  56. Nadanaciva S, et al. A high content screening assay for identifying lysosomotropic compounds. Toxicol In Vitro. 2011;25(3):715–23.

    Article  CAS  PubMed  Google Scholar 

  57. Morissette G, et al. Intracellular sequestration of amiodarone: role of vacuolar ATPase and macroautophagic transition of the resulting vacuolar cytopathology. Br J Pharmacol. 2009;157(8):1531–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Trachsel D, et al. Pharmacokinetics and pharmacodynamic effects of amiodarone in plasma of ponies after single intravenous administration. Toxicol Appl Pharmacol. 2004;195(1):113–25.

    Article  CAS  PubMed  Google Scholar 

  59. Chen Y, Mao J, Hop CE. Physiologically based pharmacokinetic modeling to predict drug-drug interactions involving inhibitory metabolite: a case study of amiodarone. Drug Metab Dispos. 2015;43(2):182–9.

    Article  PubMed  Google Scholar 

  60. Yamashita F, et al. Modeling of rifampicin-induced CYP3A4 activation dynamics for the prediction of clinical drug-drug interactions from in vitro data. PLoS One. 2013;8(9):e70330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hirsch J, Han PW. Cellularity of rat adipose tissue: effects of growth, starvation, and obesity. J Lipid Res. 1969;10(1):77–82.

    CAS  PubMed  Google Scholar 

  62. Ohyama K, et al. A significant role of human cytochrome P450 2C8 in amiodarone N-deethylation: an approach to predict the contribution with relative activity factor. Drug Metab Dispos. 2000;28(11):1303–10.

    CAS  PubMed  Google Scholar 

  63. Zahno A, et al. The role of CYP3A4 in amiodarone-associated toxicity on HepG2 cells. Biochem Pharmacol. 2011;81(3):432–41.

    Article  CAS  PubMed  Google Scholar 

  64. Ohyama K, et al. Inhibitory effects of amiodarone and its N-deethylated metabolite on human cytochrome P450 activities: prediction of in vivo drug interactions. Br J Clin Pharmacol. 2000;49(3):244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mori K, et al. Cocktail-substrate assay system for mechanism-based inhibition of CYP2C9, CYP2D6, and CYP3A using human liver microsomes at an early stage of drug development. Xenobiotica. 2009;39(6):415–22.

    Article  CAS  PubMed  Google Scholar 

  66. Reasor MJ, Kacew S. An evaluation of possible mechanisms underlying amiodarone-induced pulmonary toxicity. Proc Soc Exp Biol Med. 1996;212(4):297–304.

    Article  CAS  PubMed  Google Scholar 

  67. Varbiro G, et al. Concentration dependent mitochondrial effect of amiodarone. Biochem Pharmacol. 2003;65(7):1115–28.

    Article  CAS  PubMed  Google Scholar 

  68. Spaniol M, et al. Toxicity of amiodarone and amiodarone analogues on isolated rat liver mitochondria. J Hepatol. 2001;35(5):628–36.

    Article  CAS  PubMed  Google Scholar 

  69. Hohol K, et al. Neuropathy due to amiodarone: schwann cells are the target. Neurology. 2012;78(Meeting Abstracts 1):P06.138.

  70. Beddows SA, et al. Cytotoxic effects of amiodarone and desethylamiodarone on human thyrocytes. Biochem Pharmacol. 1989;38(24):4397–403.

    Article  CAS  PubMed  Google Scholar 

  71. Wiper A, Roberts DH, Schmitt M. Amiodarone-induced skin pigmentation: Q-switched laser therapy, an effective treatment option. Heart. 2007;93(1):15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank David Colon-Smith in Department of Computer Science at Duke University for correcting spelling, grammar, usage and punctuation errors of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhe-Yi Hu or Yuan-Sheng Zhao.

Ethics declarations

Funding

No sources of funding were used to conduct this study.

Conflict of interest

The authors declare no conflict of interest.

Appendix

Appendix

1.1 I. Model parameter abbreviations

Abbreviations

Parameter

QC

Cardiac output

Q Tissue

Blood flow to tissue

V VB

Volume of venous blood

V AB

Volume of arterial blood

V Tissue

Volume of tissue

V VTissueC

Fraction of vascular space in tissue

PS Tissue

Permeability-surface area product between vascular space and extravascular space in tissue

F u,Tissue

Fraction of unbound drug in tissue

F u,Bld

Fraction of unbound drug in blood

F u,plasma

Fraction of unbound drug in plasma

F u,mic

Fraction of unbound drug in liver microsomes

K a,Tissue

First-order association rate constant for drug binding to ‘deep tissue’ of tissue

K d,Tissue

First-order dissociation rate constant for drug binding to ‘deep tissue’ of tissue

K BP

Blood to plasma concentration ratio

V max,LivMet,AMD

Maximum metabolic rate of AMD to DEA in liver

K M,LivMet,AMD

AMD concentration at which half of V max,LivMet,AMD is achieved

CL OthMet,AMD

Clearance of unbound AMD mediated by conversion to other metabolites rather than DEA

CL Met,DEA

Clearance of unbound DEA mediated by metabolism

A VTissue

Drug amount in vascular space of tissue

A Tissue

Drug amount in tissue extravascular space except in ‘deep tissue’

A TissueDeep

Drug amount in ‘deep tissue’ of tissue extravascular space

A AB

Drug amount in arterial blood

A VB

Drug amount in venous blood

C VTissue

Drug concentration in vascular space of tissue

C Tissue

Drug concentration in tissue extravascular space except in ‘deep tissue’

C VMix

Drug concentration in mixed venous blood

C V

Drug concentration in venous blood

C plasma

Drug concentration in venous plasma

C A

Drug concentration in arterial blood

DoseRate

Dosing rate

1.2 II. Equations

Since model equations describing drug disposition in different tissue compartments are very similar, only the equations for liver, arterial blood pool and venous blood pool were presented.

1.2.1 A. Liver

1. For AMD

Liver vascular space:

$$\begin{aligned} \frac{{{\text{d}}A_{\text{VLiv,AMD}} }}{{{\text{d}}t}} =\, Q_{\text{Liv}} \times C_{\text{A,AMD}} + Q_{\text{Sp}} \times C_{\text{VSp,AMD}} - (Q_{\text{Liv}} + Q_{\text{Sp}} )\times C_{\text{VLiv,AMD}} + {\text{PS}}_{\text{Liv,AMD}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\; \times (C_{\text{Liv,AMD}} \times F_{\text{u,Liv,AMD}} - C_{\text{VLiv,AMD}} \times F_{\text{u,Bld,AMD}} ) \hfill \\ \end{aligned}$$
(3)
$$C_{\text{VLiv,AMD}} = \frac{{A_{\text{VLiv,AMD}} }}{{V_{\text{Liv}} \times V_{\text{VLivC}} }}$$
(4)

Liver extravascular space:

$$\begin{aligned} \frac{{{\text{d}}A_{\text{Liv,AMD}} }}{{{\text{d}}t}} = {\text{PS}}_{\text{Liv,AMD}} \times ( - C_{\text{Liv,AMD}} \times F_{\text{u,Liv,AMD}} + C_{\text{VLiv,AMD}} \times F_{\text{u,Bld,AMD}} )\hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; - \frac{{V_{\text{max,LivMet,AMD}} \times C_{\text{Liv,AMD}} \times F_{\text{u,Liv,AMD}} }}{{K_{\text{M,LivMet,AMD}} \times F_{\text{u,mic,AMD}} + C_{\text{Liv,AMD}} \times F_{\text{u,Liv,AMD}} }} - {\text{CL}}_{\text{OthMet,AMD}} \times C_{\text{Liv,AMD}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \times F_{\text{u,Liv,AMD}} - K_{\text{a,Liv,AMD}} \times A_{\text{Liv,AMD}} \times F_{\text{u,Liv,AMD}} + K_{\text{d,Liv,AMD}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \times A_{\text{LivDeep,AMD}} \hfill \\ \end{aligned}$$
(5)
$$C_{\text{Liv,AMD}} = \frac{{A_{\text{Liv,AMD}} }}{{V_{\text{Liv}} \times (1 - V_{\text{VLivC}} )}}$$
(6)
$$\frac{{{\text{d}}A_{\text{LivDeep,AMD}} }}{{{\text{d}}t}} = K_{\text{a,Liv,AMD}} \times A_{\text{Liv,AMD}} \times F_{\text{u,Liv,AMD}} - K_{\text{d,Liv,AMD}} \times A_{\text{LivDeep,AMD}}$$
(7)
$$C_{\text{LivExtraV,AMD}} = \frac{{A_{\text{Liv,AMD}} + A_{\text{LivDeep,AMD}} }}{{V_{\text{Liv}} \times (1 - V_{\text{VLivC}} )}}$$
(8)

Equation 3 describes the changing rate of AMD amount in vascular space of liver; Eq. 5 describes the changing rate of AMD amount in extravascular space of liver except in ‘deep tissue’; Eq. 7 describes the changing rate of AMD amount in ‘deep tissue’ of liver; Eq. 8 describes the AMD concentration in extravascular space of liver.

2. For DEA

Liver vascular space:

$$\begin{aligned} \frac{{{\text{d}}A_{\text{VLiv,DEA}} }}{{{\text{d}}t}} = (Q_{\text{Liv}} \times C_{\text{A,DEA}} + Q_{\text{Sp}} \times C_{\text{VSp,DEA}} - (Q_{\text{Liv}} + Q_{\text{Sp}} )\times C_{\text{VLiv,DEA}} + {\text{PS}}_{\text{Liv,DEA}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \times (C_{\text{Liv,DEA}} \times F_{\text{u,Liv,DEA}} - C_{\text{VLiv,DEA}} \times F_{\text{u,Bld,DEA}} ) \hfill \\ \end{aligned}$$
(9)
$$C_{\text{VLiv,DEA}} = \frac{{A_{\text{VLiv,DEA}} }}{{V_{\text{Liv}} \times V_{\text{VLivC}} }}$$
(10)

Liver extravascular space:

$$\begin{aligned} \frac{{{\text{d}}A_{{{\text{Liv}},{\text{DEA}}}} }}{{{\text{d}}t}} = {\text{PS}}_{{{\text{Liv}},{\text{DEA}}}} \times \left( { - C_{{{\text{Liv}},{\text{DEA}}}} \times F_{{{\text{u}},{\text{Liv}},{\text{DEA}}}} + C_{{{\text{VLiv}},{\text{DEA}}}} \times F_{{{\text{u}},{\text{Bld}},{\text{DEA}}}} } \right) \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \frac{{V_{{{ \hbox{max} },{\text{LivMet}},{\text{AMD}}}} \times C_{{{\text{Liv}},{\text{AMD}}}} \times F_{{{\text{u}},{\text{Liv}},{\text{AMD}}}} }}{{K_{{{\text{M}},{\text{LivMet}},{\text{AMD}}}} \times F_{{{\text{u}},{\text{mic}},{\text{AMD}}}} + C_{{{\text{Liv}},{\text{AMD}}}} \times F_{{{\text{u}},{\text{Liv}},{\text{AMD}}}} }} - {\text{CL}}_{{{\text{Met}},{\text{DEA}}}} \times C_{{{\text{Liv}},{\text{DEA}}}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \times F_{{{\text{u}},{\text{Liv}},{\text{DEA}}}} - K_{{{\text{a}},{\text{Liv}},{\text{DEA}}}} \times A_{{{\text{Liv}},{\text{DEA}}}} \times F_{{{\text{u}},{\text{Liv}},{\text{DEA}}}} + K_{{{\text{d}},{\text{Liv}},{\text{DEA}}}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\,\; \times A_{{{\text{LivDeep}},{\text{DEA}}}} \hfill \\ \end{aligned}$$
(11)
$$C_{{{\text{Liv}},{\text{DEA}}}} = \frac{{A_{{{\text{Liv}},{\text{DEA}}}} }}{{V_{\text{Liv}} \times (1 - V_{\text{VLivC}} )}}$$
(12)
$$\frac{{{\text{d}}A_{{{\text{LivDeep}},{\text{DEA}}}} }}{{{\text{d}}t}} = K_{{{\text{a}},{\text{Liv}},{\text{DEA}}}} \times A_{{{\text{Liv}},{\text{DEA}}}} \times F_{{{\text{u}},{\text{Liv}},{\text{DEA}}}} - K_{{{\text{d}},{\text{Liv}},{\text{DEA}}}} \times A_{{{\text{LivDeep}},{\text{DEA}}}}$$
(13)
$$C_{{{\text{LivExtraV}},{\text{DEA}}}} = \frac{{A_{{{\text{Liv}},{\text{DEA}}}} + A_{{{\text{LivDeep}},{\text{DEA}}}} }}{{V_{\text{Liv}} \times (1 - V_{\text{VLivC}} )}}$$
(14)

1.2.2 B. Venous blood

1. For AMD

$$\begin{aligned} C_{{{\text{VMix}},{\text{AMD}}}} = ((Q_{\text{Liv}} + Q_{\text{Sp}} ) \times C_{{{\text{VLiv}},{\text{AMD}}}} + Q_{\text{Kid}} \times C_{{{\text{VKid}},{\text{AMD}}}} + Q_{\text{H}} \times C_{{{\text{VH}},{\text{AMD}}}} + Q_{\text{Br}} \times C_{{{\text{VBr}},{\text{AMD}}}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + Q_{\text{Thy}} \times C_{{{\text{VThy}},{\text{AMD}}}} + Q_{\text{F}} \times C_{{{\text{VF}},{\text{AMD}}}} + Q_{\text{Sk}} \times C_{{{\text{VSk}},{\text{AMD}}}} + Q_{\text{Re}} \times C_{{{\text{VRe}},{\text{AMD}}}} ) \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\, \times \frac{1}{QC} \hfill \\ \end{aligned}$$
(15)
$$\frac{{dA_{{{\text{VB}},{\text{AMD}}}} }}{dt} = QC \times (C_{{{\text{VMix}},{\text{AMD}}}} - C_{{{\text{V}},{\text{AMD}}}} ) + DoseRate_{AMD}$$
(16)
$$C_{{{\text{V}},{\text{AMD}}}} = \frac{{A_{{{\text{VB}},{\text{AMD}}}} }}{{V_{\text{VB}} }}$$
(17)
$$C_{\text{Plasma,AMD}} = \frac{{C_{\text{V,AMD}} }}{{K_{\text{BP,AMD}} }}$$
(18)

Equation 16 describes the changing rate of AMD amount in venous blood.

2. For DEA

$$\begin{aligned} C_{{{\text{VMix}},{\text{DEA}}}} = ((Q_{\text{Liv}} + Q_{\text{Sp}} ) \times C_{{{\text{VLiv}},{\text{DEA}}}} + Q_{\text{Kid}} \times C_{{{\text{VKid}},{\text{DEA}}}} + Q_{\text{H}} \times C_{{{\text{VH}},{\text{DEA}}}} + Q_{\text{Br}} \times C_{{{\text{VBr}},{\text{DEA}}}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\; + Q_{\text{Thy}} \times C_{{{\text{VThy}},{\text{DEA}}}} + Q_{\text{F}} \times C_{{{\text{VF}},{\text{DEA}}}} + Q_{\text{Sk}} \times C_{{{\text{VSk}},{\text{DEA}}}} + Q_{\text{Re}} \times C_{{{\text{VRe}},{\text{DEA}}}} ) \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\; \times \frac{1}{QC} \hfill \\ \end{aligned}$$
(19)
$$\frac{{{\text{d}}A_{{{\text{VB}},{\text{DEA}}}} }}{{{\text{d}}t}} = {\text{QC}} \times (C_{{{\text{VMix}},{\text{DEA}}}} - C_{{{\text{V}},{\text{DEA}}}} ) + {\text{Dose Rate}}_{\text{DEA}}$$
(20)
$$C_{{{\text{V}},{\text{DEA}}}} = \frac{{A_{{{\text{VB}},{\text{DEA}}}} }}{{V_{\text{VB}} }}$$
(21)
$$C_{{{\text{Plasma}},{\text{DEA}}}} = \frac{{C_{{{\text{V}},{\text{DEA}}}} }}{{K_{{{\text{BP}},{\text{DEA}}}} }}$$
(22)

1.2.3 C. Arterial blood

1. For AMD

$$\frac{{{\text{d}}A_{{{\text{AB}},{\text{AMD}}}} }}{{{\text{d}}t}} = {\text{QC}} \times (C_{{{\text{VLu}},{\text{AMD}}}} - C_{{{\text{A}},{\text{AMD}}}} )$$
(23)
$$C_{{{\text{A}},{\text{AMD}}}} = \frac{{A_{{{\text{AB}},{\text{AMD}}}} }}{{V_{\text{AB}} }}$$
(24)

Equation 23 describes the changing rate of AMD amount in arterial blood.

2. For AMD

$$\frac{{{\text{d}}A_{{{\text{AB}},{\text{DEA}}}} }}{{{\text{d}}t}} = {\text{QC}} \times (C_{{{\text{VLu}},{\text{DEA}}}} - C_{{{\text{A}},{\text{DEA}}}} )$$
(25)
$$C_{{{\text{A}},{\text{DEA}}}} = \frac{{A_{{{\text{AB}},{\text{DEA}}}} }}{{V_{\text{AB}} }}$$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, JT., Cai, Y., Chen, F. et al. A Physiologically Based Pharmacokinetic Model of Amiodarone and its Metabolite Desethylamiodarone in Rats: Pooled Analysis of Published Data. Eur J Drug Metab Pharmacokinet 41, 689–703 (2016). https://doi.org/10.1007/s13318-015-0295-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-015-0295-0

Keywords

Navigation