Skip to main content
Log in

Strategies for preclinical pharmacokinetic investigation in streptozotocin-induced diabetes mellitus (DMIS) and alloxan-induced diabetes mellitus (DMIA) rat models: case studies and perspectives

  • Review
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Preclinical rodent models that manifest type 2 diatetes mellitus using either streptozotocin (DMIS) or alloxan (DMIA) have been well established. Both DMIS and DMIA models have served as key experimental tools to evaluate and understand the pharmacokinetic disposition of scores of drugs and therefore some key questions with respect to absorption, metabolism or elimination of drugs can be answered during the development of full-blown diabetes in the animal models. The choice of the right preclinical rodent model and adaptation of the appropriate experimental design could help to generate data to enable go or no-go decision on the clinical candidate. Also, such models may help to understand the risk potential from a drug–drug interaction perspective. The review provides an overview of the strategies and perspectives of institutionalizing DMIS and/or DMIA rat models using relevant case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Al-Salami H, Butt G, Tucker I, Golocorbin-Kon S, Mikov M (2011) Probiotics decreased the bioavailability of the bile acid analog, monoketocholic acid, when coadministered with gliclazide, in healthy but not diabetic rats. Eur J Drug Metab Pharmacokinet 37(2):99–108

    Article  PubMed  Google Scholar 

  • Bae SK, Yang SH, Lee SJ, Kwon JW, Kim WB, Lee DC, Lee MG (2005) Pharmacokinetic changes of DA-7867, a new oxazolidinone, after intravenous and oral administration to rats with short-term and long-term diabetes mellitus induced by streptozotocin. Eur J Pharm Sci 25(2–3):337–345

    Article  CAS  PubMed  Google Scholar 

  • Bae SK, Kim JY, Yang SH, Kim JW, Kim T, Lee MG (2006) Pharmacokinetics of oltipraz in rat models of diabetes mellitus induced by alloxan or streptozotocin. Life Sci 78(20):2287–2294

    Article  CAS  PubMed  Google Scholar 

  • Baek HW, Bae SK, Lee MG, Sohn YT (2006) Pharmacokinetics of chlorzoxazone in rats with diabetes: induction of CYP2E1 on 6-hydroxychlorzoxazone formation. J Pharm Sci 95(11):2452–2462

    Article  CAS  PubMed  Google Scholar 

  • Baribault H (2010) Mouse models of type II diabetes mellitus in drug discovery. Methods Mol Biol 602:135–155

    Article  CAS  PubMed  Google Scholar 

  • Carnovale CE, Marinelli RA, Rodríguez Garay EA (1986) Bile flow decrease and altered bile composition in streptozotocin-treated rats. Biochem Pharmacol 35:2625–2628

    Article  CAS  PubMed  Google Scholar 

  • Chen GM, Hu N, Liu L, Xie SS, Wang P, Li J, Xie L, Wang GJ, Liu XD (2011) Pharmacokinetics of verapamil in diabetic rats induced by combination of high-fat diet and streptozotocin injection. Xenobiotica 41(6):494–500

    Article  CAS  PubMed  Google Scholar 

  • Choi YH, Lee AK, Bae SK, Kim SO, Lee MG (2005) Pharmacokinetics of 5-fluorouracil in rats with diabetes mellitus induced by streptozotocin. Biopharm Drug Dispos 26(3):93–98

    Article  CAS  PubMed  Google Scholar 

  • Choi YH, Lee DC, Lee I, Lee MG (2008) Changes in metformin pharmacokinetics after intravenous and oral administration to rats with short-term and long-term diabetes induced by streptozotocin. J Pharm Sci 97(12):5363–5375

    Article  CAS  PubMed  Google Scholar 

  • Deng YX, Shi QZ, Chen B, Zhang XJ, Liu SZ, Qiu XM (2012) Comparative pharmacokinetics of baicalin in normal and the type 2 diabetic rats after oral administration of the Radix scutellariae extract. Fitoterapia 83(8):1435–1442

    Article  CAS  PubMed  Google Scholar 

  • Fancher RM, Zhang H, Sleczka B, Derbin G, Rockar R, Marathe P (2011) Development of a canine model to enable the preclinical assessment of pH-dependent absorption of test compounds. J Pharm Sci 100(7):2979–2988

    Article  CAS  PubMed  Google Scholar 

  • Figueroa-Valverde L, Diaz-Cedillo F, Lopez-Ramos M, Garcia-Cervera E, Pool-Gomez E, Cardena-Arredondo C, Ancona-Leon G (2012) Glibenclamide-pregnenolone derivative has greater hypoglycemic effects and biodistribution than glibenclamide-OH in alloxan-rats. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 156(2):122–127

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Li Q, Gao Z, Wang L (2011) Antidiabetic effects of Corni Fructus extract in streptozotocin-induced diabetic rats. Yonsei Med J 53(4):691–700

    Article  Google Scholar 

  • Ibeh BO, Ezeaja MI (2011) Preliminary study of antidiabetic activity of the methanolic leaf extract of Axonopus compressus (P. Beauv) in alloxan-induced diabetic rats. J Ethnopharmacol 138(3):713–716

    Article  PubMed  Google Scholar 

  • Kamboj A, Kumar S, Kumar V (2013) Evaluation of antidiabetic activity of hydroalcoholic extract of Cestrum nocturnum leaves in streptozotocin-induced diabetic rats. Adv Pharmacol Sci 2013:150401

    PubMed Central  PubMed  Google Scholar 

  • Kang HE, Sohn SI, Baek SR, Lee JW, Lee MG (2010) Liquiritigenin pharmacokinetics in a rat model of diabetes mellitus induced by streptozotocin: greater formation of glucuronides in the liver, especially M2, due to increased hepatic uridine 5′-diphosphoglucuronic acid level. Metabolism 59(10):1472–1480

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Kwon JW, Kim WB, Lee I, Lee MG (2004) Pharmacokinetic changes of DA-8159, a new erectogenic, after intravenous and oral administration to rats with diabetes mellitus induced by streptozotocin. J Pharm Sci 93(9):2374–2387

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Lee JH, Kim SH, Lee MG (2005a) Effect of CYP3A1(23) induction on clarithromycin pharmacokinetics in rats with diabetes mellitus. Antimicrob Agents Chemother 49(6):2528–2532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim YC, Lee AK, Lee JH, Lee I, Lee DC, Kim SH, Kim SG, Lee MG (2005b) Pharmacokinetics of theophylline in diabetes mellitus rats: induction of CYP1A2 and CYP2E1 on 1,3-dimethyluric acid formation. Eur J Pharm Sci 26(1):114–123

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Oh EY, Kim SH, Lee MG (2005c) Pharmacokinetics and pharmacodynamics of intravenous torasemide in diabetic rats induced by alloxan or streptozotocin. Biopharm Drug Dispos 26(8):371–378

    Article  CAS  PubMed  Google Scholar 

  • Kingback M, Carlsson B, Ahlner J, Bengtsson F, Kugelberg FC (2011) Cytochrome P450-dependent disposition of the enantiomers of citalopram and its metabolites: in vivo studies in Sprague-Dawley and Dark Agouti rats. Chirality 23(2):172–177

    Article  PubMed  Google Scholar 

  • Lavasani H, Sheikholeslami B, Ardakani Y, Abdollahi M, Hakemi L, Rouini M-R (2013) Study of the pharmacokinetic changes of Tramadol in diabetic rats. DARU J Pharm Sci 21:17

    Article  CAS  Google Scholar 

  • Lee JH, Lee MG (2008) Telithromycin pharmacokinetics in rat model of diabetes mellitus induced by alloxan or streptozotocin. Pharm Res 25(8):1915–1924

    Article  CAS  PubMed  Google Scholar 

  • Lee DY, Lee MG, Shin HS, Lee I (2007) Changes in omeprazole pharmacokinetics in rats with diabetes induced by alloxan or streptozotocin: faster clearance of omeprazole due to induction of hepatic CYP1A2 and 3A1. J Pharm Pharm Sci 10(4):420–433

    CAS  PubMed  Google Scholar 

  • Lee MG, Choi YH, Lee I (2008) Effects of diabetes mellitus induced by alloxan on the pharmacokinetics of metformin in rats: restoration of pharmacokinetic parameters to the control state by insulin treatment. J Pharm Pharm Sci 11(1):88–103

    PubMed  Google Scholar 

  • Lee DY, Chung HJ, Choi YH, Lee U, Kim SH, Lee I, Lee MG (2009) Pharmacokinetics of ipriflavone and its two metabolites, M1 and M5, after the intravenous and oral administration of ipriflavone to rat model of diabetes mellitus induced by streptozotocin. Eur J Pharm Sci 38(5):465–471

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Choi YH, Kim TK, Ryu KH, Lee BY, Lee MG (2010a) Pharmacokinetics of mirodenafil and its two metabolites, SK3541 and SK3544, after intravenous and oral administration of mirodenafil to streptozotocin-induced diabetes mellitus rats. Xenobiotica 40(2):129–137

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Kang HE, Lee MG (2010b) Pharmacokinetic interaction between telithromycin and metformin in diabetes mellitus rats. Xenobiotica 40(3):217–224

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Lee A, Oh JH, Lee YJ (2012) Comparative pharmacokinetic study of paclitaxel and docetaxel in streptozotocin-induced diabetic rats. Biopharm Drug Dispos 33(8):474–486

    Article  CAS  PubMed  Google Scholar 

  • Lee U, Lee L, Lee BK, Kang HE (2013) Faster non-renal clearance of metoprolol in streptozotocin-induced diabetes mellitus rats. Eur J Pharm Sci 50(3–4):447–452

    Google Scholar 

  • Lentz KA, Quitko M, Morgan DG, Grace JE Jr, Gleason C, Marathe PH (2007) Development and validation of a preclinical food effect model. J Pharm Sci 96(2):459–472

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Liu K, Wood HB, McCann ME, Doebber TW, Chang CH, Akiyama TE, Einstein M, Berger JP, Meinke PT (2009) Discovery of a peroxisome proliferator activated receptor gamma (PPARgamma) modulator with balanced PPARalpha activity for the treatment of type 2 diabetes and dyslipidemia. J Med Chem 52(14):4443–4453

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Liu L, Li J, Mei D, Duan R, Hu N, Guo H, Zhong Z, Liu X (2012) Combined contributions of impaired hepatic CYP2C11 and intestinal breast cancer resistance protein activities and expression to increased oral glibenclamide exposure in rats with streptozotocin-induced diabetes mellitus. Drug Metab Dispos 40(6):1104–1112

    Article  PubMed  Google Scholar 

  • Matschinsky FM (2013) GKAs for diabetes therapy: why no clinically useful drug after two decades of trying? Trends Pharmacol Sci 34(2):90–99

    Article  CAS  PubMed  Google Scholar 

  • Mikov M, Boni NS, Al-Salami H, Kuhajda K, Kevresan S, Golocorbin-Kon S, Fawcett JP (2007) Bioavailability and hypoglycemic activity of the semisynthetic bile acid salt, sodium 3alpha,7alpha-dihydroxy-12-oxo-5beta-cholanate, in healthy and diabetic rats. Eur J Drug Metab Pharmacokinet 32(1):7–12

    Article  CAS  PubMed  Google Scholar 

  • Moon CH, Lee HJ, Jung YS, Lee SH, Baik EJ (1998) Pharmacokinetics of losartan and its metabolite, EXP3174, after intravenous and oral administration of losartan to rats with streptozotocin-induced diabetes mellitus. Res Commun Mol Pathol Pharmacol 101(2):147–158

    CAS  PubMed  Google Scholar 

  • Motawi TK, El-Maraghy SA, Senousy MA (2013) Angiotensin-converting enzyme inhibition and angiotensin AT1 receptor blockade downregulate angiotensin-converting enzyme expression and attenuate renal injury in streptozotocin-induced diabetic rats. J Biochem Mol Toxicol 27(7):378–387

    Article  CAS  PubMed  Google Scholar 

  • Musial DC, da Silva Júnior ED, da Silva RM, Miranda-Ferreira R, Lima-Landman MT, Jurkiewicz A, García AG, Jurkiewicz NH (2013) Increase of angiotensin-converting enzyme activity and peripheral sympathetic dysfunction could contribute to hypertension development in streptozotocin-induced diabetic rats. Diabetes Vasc Dis Res 10(6):498–504

    Article  CAS  Google Scholar 

  • Nadai M, Yoshizumi H, Kuzuya T, Hasegawa T, Johno I, Kitazawa S (1990) Effects of diabetes on disposition and renal handling of cefazolin in rats. J Pharmacol Exp Ther 18:565–570

    CAS  Google Scholar 

  • Ohtsuka T, Yoshikawa T, Kozakai K, Tsuneto Y, Uno Y, Utoh M, Yamazaki H, Kume T (2010) Alprazolam as an in vivo probe for studying induction of CYP3A in cynomolgus monkeys. Drug Metab Dispos 38(10):1806–1813

    Article  CAS  PubMed  Google Scholar 

  • Park JM, Moon CH, Lee MG (1996) Pharmacokinetic changes of methotrexate after intravenous administration to streptozotocin-induced diabetes mellitus rats. Res Commun Mol Pathol Pharmacol 93:343–352

    CAS  PubMed  Google Scholar 

  • Park JH, Lee WI, Yoon WH, Park YD, Lee JS, Lee MG (1998) Pharmacokinetic and pharmacodynamic changes of furosemide after intravenous and oral administration to rats with alloxan-induced diabetes mellitus. Biopharm Drug Dispos 19:357–364

    Article  CAS  PubMed  Google Scholar 

  • Pickup JC, Williams G (1991) Textbook of diabetes, vol 1. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Reed MJ, Scribner KA (1999) In-vivo and in vitro models of type 2 diabetes in pharmaceutical drug discovery. Diabetes Obes Metab 1(2):75–86

    Article  CAS  PubMed  Google Scholar 

  • Salib JY, Michael HN, Eskande EF (2013) Anti-diabetic properties of flavonoid compounds isolated from Hyphaene thebaica epicarp on alloxan induced diabetic rats. Pharmacogn Res 5(1):22–29

    Article  Google Scholar 

  • Salman ZK, Refaat R, Selima E, El Sarha A, Ismail MA (2013) The combined effect of metformin and l-cysteine on inflammation, oxidative stress and insulin resistance in streptozotocin-induced type 2 diabetes in rats. Eur J Pharmacol 714(1–3):448–455

    Article  CAS  PubMed  Google Scholar 

  • Sama V, Nadipelli M, Yenumula P, Bommineni MR, Mullangi R (2012) Effect of piperine on antihyperglycemic activity and pharmacokinetic profile of nateglinide. Arzneimittelforschung 62(8):384–388

    Article  CAS  PubMed  Google Scholar 

  • Samarghandian S, Borji A, Delkhosh MB, Samini F (2013) Safranal treatment improves hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic rats. J Pharm Pharm Sci 16(2):352–362

    PubMed  Google Scholar 

  • Sekhar MC, Reddy PJ (2012) Influence of atorvastatin on the pharmacodynamic and pharmacokinetic activity of repaglinide in rats and rabbits. Mol Cell Biochem 364(1–2):159–164

    Article  CAS  PubMed  Google Scholar 

  • Semple G, Lehmann J, Wong A, Ren A, Bruce M, Shin YJ, Sage CR, Morgan M, Chen WC, Sebring K, Chu ZL, Leonard JN, Al-Shamma H, Grottick AJ, Du F, Liang Y, Demarest K, Jones R (2012) Discovery of a second generation agonist of the orphan G-protein coupled receptor GPR119 with an improved profile. Bioorg Med Chem Lett 22(4):1750–1755

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Yang Z, Mintier G, Han YH, Chen C, Balimane P, Jemal M, Zhao W, Zhang R, Kallipatti S, Selvam S, Sukrutharaj S, Krishnamurthy P, Marathe P, Rodrigues AD (2013) Cynomolgus monkey as a potential model to assess drug interactions involving hepatic organic anion transporting polypeptides: in vitro, in vivo, and in vitro-to-in vivo extrapolation. J Pharmacol Exp Ther 344(3):673–685

    Article  CAS  PubMed  Google Scholar 

  • Srinivas NR (2010) Altered disposition of drugs in acute renal failure rat models: drug development strategies and perspectives. Arzneimittelforschung 60(12):731–748

    CAS  PubMed  Google Scholar 

  • Veeresham C, Sujatha S, Rani TS (2012) Effect of piperine on the pharmacokinetics and pharmacodynamics of glimepiride in normal and streptozotocin-induced diabetic rats. Nat Prod Commun 7(10):1283–1286

    CAS  PubMed  Google Scholar 

  • Watkins JB III, Sanders RA (1995) Diabetes mellitus-induced alterations of hepatobiliary function. Pharmacol Rev 47:1–23

    PubMed  Google Scholar 

  • Watkins JB III, Sherman SE (1992) Long-term diabetes alters the hepatobiliary clearance of acetaminophen, bilirubin and digoxin. J Pharmacol Exp Ther 260:1337–1343

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuggehally R. Srinivas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivas, N.R. Strategies for preclinical pharmacokinetic investigation in streptozotocin-induced diabetes mellitus (DMIS) and alloxan-induced diabetes mellitus (DMIA) rat models: case studies and perspectives. Eur J Drug Metab Pharmacokinet 40, 1–12 (2015). https://doi.org/10.1007/s13318-014-0186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-014-0186-9

Keywords

Navigation