Skip to main content
Log in

Molecular marker aided characterization of race specific and non-race specific rust resistance genes in elite wheat (Triticum spp.) germplasm

  • Original Research Article
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Among wheat diseases, leaf (brown) rust caused by Puccinia triticina Eriks. causes more damage to the crop than any other rust. The pathogen is very dynamic and renders rust-resistant wheat cultivars susceptible by evolving new pathotypes. To counter such threats, developing wheat cultivars using diverse germplasm carrying rust resistance genes effective at different growth stages is required. Forty elite wheat genotypes were selected for characterizing race specific (Lr19/Sr25, Lr24/Sr24) and non-race specific (Lr34/Yr18/Pm38/Sr57, Lr46/Yr29/Pm39) rust resistance genes using Sequence Tagged Site (STS) markers Sr24#12, Gb, csLV34 and SSR marker wmc44. The marker analysis revealed the presence of Lr24/Sr24 genes in 47% of the wheat genotypes, whereas 22.2% possessed Lr24/Sr24 and Lr34/Yr18/Pm38/Sr57 gene combination. Two genotypes G16 and G12 were confirmed to have Lr19/Sr25, Lr24/Sr24, Lr34/Yr18/Pm38/Sr57 and Lr24/Sr24, Lr34/Yr18/Pm38/Sr57, Lr46/Yr29/Pm39 gene combinations, respectively. Genetic diversity analysis based on the dissimilarity indices indicated the presence of huge genetic diversity among the wheat germplasm. The presence of Lr24/Sr24 using Sr24#12 marker was confirmed in HS545, which showed monogenic control of leaf rust resistance against pathotype 77–5 (THTTM). Leaf rust and stem rust resistance present in this set of diverse germplasm could be used as potent donors for durable rust resistance breeding in wheat. The molecular markers utilized in this study would also be useful in pyramiding or transferring the R genes into the rust susceptible agronomically superior wheat germplasm. Genotypes G12 and G19 resistant to rusts and also had significant grain yield superiority over HS490 could be a better choice for their use in rust resistance breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

Available.

Code availability

Not applicable.

References

  • Bansal U, Hayden MJ, Venkata BP, Khanna R, Saini RG, Bariana HS (2008) Genetic mapping of adult plant leaf rust resistance genes Lr48 and Lr49 in common wheat. Theor Appl Genet 17:307–312

    Google Scholar 

  • Bariana HS, Brown GN, Bansal UK, Miah H, Standen GE, Lu M (2007) Breeding triple rust resistant wheat cultivars for Australia using conventional and marker assisted selection technologies. Australian J Agric Res 58(6):576. https://doi.org/10.1071/ar07124

    Article  Google Scholar 

  • Bhardwaj SC (2012) Wheat rust pathotypes in Indian sub-continent then and now. Wheat-Productivity enhancement under changing climate (Eds. Singh SS, Hanchinal RR, Singh G, Sharma RK, Saharan MS, Sharma I). Narosa Publishing House Pvt. Ltd.22, Delhi Medical Association Road, Daryaganj, New Delhi 110002, pp 227–238

  • Bhardwaj SC, Kumar S, Gangwar OP, Prasad P, Kashyap PL, Khan H, Savadi S, Singh GP, Gupta N, Thakur R (2021) Physiologic specialization and genetic differentiation of Puccinia triticina causing leaf rust of wheat in the Indian subcontinent during 2016–2019. Plant Dis. https://doi.org/10.1094/PDIS-06-20-1382-RE

    Article  PubMed  Google Scholar 

  • Bhardwaj SC, Prashar M, Kumar S, Jain SK, Datta D (2005) Lr19 resistance in wheat becomes susceptible to Puccinia triticina in India. Plant Dis 89:1360

    CAS  PubMed  Google Scholar 

  • Bhardwaj SC, Singh GP, Gangwar OP, Prasad P, Kumar S (2019) Status of Wheat Rust Research and Progress in Rust Management-Indian Context. Agronomy 9(12). https://doi.org/10.3390/agronomy9120892

  • Caldwell RM (1968) Breeding for general and/or specific plant disease resistance. p 263–272. In: KW Finlay and KW Shephard (Eds) Proceedings of the 3rd International Wheat Genetic Symposium, Australian Acedemy of Sciences, Canberra, Australia

  • Charpe A, Koul S, Gupta SK, Singh A, Pallavi JK, Prabhu KV (2012) Marker assisted gene pyramiding of leaf rust resistance genes Lr9, Lr24 and Lr28 in a bread wheat cultivar HD2329. J Wheat Res 4(1):20–28

    Google Scholar 

  • Czajowski G, Strzambicka A, Karska K (2011) Virulence in population of Puccinia triticina, the casual agent of wheat and triticale leaf rust in Poland in 2008–2010. Bull Plant Breed ACCLIM Inst 260(261):145–153

    Google Scholar 

  • Dyck PL (1987) The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome 29:467–469

    Google Scholar 

  • Dyck PL (1991) Genetics of adult plant leaf rust resistance in Chinese Spring and Sturdy wheat. Crop Sci 31(2):309–311

    Google Scholar 

  • Ejaz M, Iqbal M, Shahzad A, Atiq-ur-Rehman AI, Ali GM (2012) Genetic variation for markers linked to stem rust resistance genes in Pakistani wheat varieties. Crop Sci 52:2638–2648. https://doi.org/10.2135/cropsci2012.01.0040

    Article  Google Scholar 

  • Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN (2014) The past, present and future of breeding rust resistant wheat. Front Plant Sci 5:641. https://doi.org/10.3389/fpls.2014.00641

    Article  PubMed  PubMed Central  Google Scholar 

  • German SE, Kolmer JA (1992) Effect of Gene Lr34 in the Enhancement of Resistance to Leaf Rust of Wheat. Theor Appl Genet 84:97–105

    CAS  PubMed  Google Scholar 

  • Huerta-Espino J, Singh R, Crespo-Herrera LA, Vilasenor-Mir HE, Rodriguez-Garcia MF, Dreisigacker S, Baroenas-Santana D, Lagudah E (2020) Adult plant slow rusting genes confer high levels of resistance to rusts in bread wheat cultivars from Mexico. Front Plant Sci 11:827. https://doi.org/10.3389/fpls.2020.00824

    Article  Google Scholar 

  • Huerta-Espino J, Singh RP, German S, McCallum BD, Park RF, Chen WQ, Bhardwaj SC, Goyeau H (2011) Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 179:143–160. https://doi.org/10.1007/S10681-011-0361-x

    Article  Google Scholar 

  • Kolmer JA, Chen X, Jin Y (2008b) Diseases which challenge global wheat production the wheat rusts. In: BF Carver, Editor Wheat: Science and trade. Wiley-Stemwell, Ames, IA

  • Kolmer JA, Singh RP, Garvin DF, Viccars L, William HM, Huerta-Espino J, Ogbonnaya FC, Raman H, Orford S, Bariana HS, Lagudah HS (2008a) Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm. Crop Sci 48:1841–1852

    CAS  Google Scholar 

  • Kumar S, Bhardwaj SC, Gangwar OP, Sharma A, Qureshi N, Kumaran VV, Khan H, Prasad P, Miah H, Singh GP, Sharma K, Verma H, Forrest KL, Trethowan RM, Bariana H, Bansal UK (2021) Lr80: A new and widely effective source of leaf rust resistance of wheat for enhancing diversity of resistance among modern cultivars. Theor Appl Genet. https://doi.org/10.1007/s00122-020-03735-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagudah ES, Mc Fadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet 114:21–30

    CAS  PubMed  Google Scholar 

  • Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, et al (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116.https://doi.org/10.1007/s00122-008-0743-1

  • Lillemo M, Joshi AK, Prasad R, Chand R, Singh RP (2013) QTL for spot blotch resistance in bread wheat line Saar co-locate to the biotrophic disease resistance loci Lr34 and Lr46. Theor Appl Genet 126(3):711–719

    CAS  PubMed  Google Scholar 

  • Liu S, Yu LX, Singh RP, Jin Y, Sorrells ME, Anderson JA (2010) Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes Sr25 and Sr26. Theor Appl Genet 120:691–697

    CAS  PubMed  Google Scholar 

  • Mago R, Bariana HS, Dundas LS, Speilmeyer W, Lawrence GJ, Pryor AJ, Ellis JG (2005) Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor Appl Genet 111:496–504. https://doi.org/10.1007/s00122-005-2039-z

    Article  CAS  PubMed  Google Scholar 

  • Martinez F, Niks RE, Singh RP, Rubiales D (2001) Characterization of Lr46, a gene conferring partial resistance to wheat leaf rust. Hereditas 135:111–114

    CAS  PubMed  Google Scholar 

  • McIntosh RA, Bariana HS, Park RF, Wellings CR (2001) Aspects of wheat rust research in Australia. Euphytica 119:115–120

    Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO, Australia

    Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Xia XC (2017) Catalogue of Gene Symbols for Wheat. Supplement. In: KOMUGI–Integrated Wheat Science Database at http://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf

  • Mishra AN, Prakasha TL, Kaushal K, Dubey VG (2014) Validation of Lr24 in some released bread wheat varieties and its implications in leaf rust resistance breeding and deployment in Central India. Indian Phytopathol 67(1):102–103

    Google Scholar 

  • Mishra AN, Tiwari KN, Singh VK, Sivasamy M, Pal D, Bhardwaj SC, Gangwar OP, Prakasha TL, Solanki KS, Phuke RM, Sai Prasad SV, Mishra CN, Sawashe SG, Narute TK (2021) Insights into the rust resistance base of common wheat (Triticum aestivum L.) in India. Indian Phytopathol 74:537–548

    Google Scholar 

  • Monneveux P, Reynolds MP, Gonzalez Aguilar J, Singh RP (2003) Effects of the 7DL.7Ag translocation from Lophopyrum elongatum on wheat yield and related morpho-physiological traits under different environments. Plant Breed 122:379–384

    CAS  Google Scholar 

  • Nayar SK, Bhardwaj SC, Prashar M (1999) Characterization of Lr34 and Sr2 in Indian wheat (Triticum aestivum) germplasm. Indian J Agric Sci 69:718–721

    Google Scholar 

  • Pal D, Bhardwaj SC, Sharma P, Sharma D, Khan H, Harikrishna BHP, Jha SK, Patial M, Chauhan D, Kumari S, Prabhu KV (2020) Molecular marker aided selection for developing rust resistant genotypes by pyramiding Lr19/Sr25 and Yr15 in wheat. Australas Plant Pathol 49:631–640. https://doi.org/10.1007/s13313-020-00739-0

    Article  CAS  Google Scholar 

  • Panse VG, Sukhatme PV (1995) Statistical methods for agricultural workers. ICAR, New Delhi, pp 1–359

  • Parlevliet J (1975) Partial resistance of barley to leaf rust, Puccinia hordei. I. Effect of cultivar and development stage on latent period. Euphytica 24(1):21–27

    Google Scholar 

  • Paterson AH, Tanksley SD, Sorrells ME (1991) DNA markers in Plant Improvement. Adv Agron 46:39–90

    CAS  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software: http://darwin.cirad.fr/darwin

  • Pretorius ZA, Rijkenberg FHJ, Wilcoxson RD (1988) Effects of growth stage, leaf position and temperature on adult-plant resistance of wheat infected by Puccinia recondita f. sp. tritici. Plant Pathol 37:36–44

    Google Scholar 

  • Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda. Plant Dis 84:203

    CAS  PubMed  Google Scholar 

  • Prins R, Groenewaid JZ, Marais GF, Snape JW, Koebner RMD (2001) AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor Appl Genet 103:618–624

    CAS  Google Scholar 

  • Randhawa MS, Bains NS, Sohu VS, Chhuneja P, Trethowan RM, Bariana HS, Bansal U (2019) Molecular marker assisted transfer of stripe rust and stem rust resistance genes into four wheat cultivars. Agronomy 9:497. https://doi.org/10.3390/agronomy9090497

    Article  CAS  Google Scholar 

  • Rattu AR, Ahmad I, Fayyaz M, Akhtar MA, Ulhaque I, Zakri M, Afzal SN (2009) Virulence analysis of Puccinia triticina cause of leaf rust of wheat. Pak J Bot 41:1957–1964

    Google Scholar 

  • Rautela A, Dwivedi M (2018) Wheat stem rust race Ug99: A shifting enemy. Int J Curr Microbiol Appl Sci 7(1):1262–1266

    Google Scholar 

  • Roelfs AP (1988) Resistance to leaf and stem rusts in wheat. In: Breeding strategies for resistance to the rusts of wheat (Eds Simmonds NW and Raja Ram), CIMMYT, Mexico. pp 10–25

  • Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of disease management. Mexico CIMMYT

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76

    CAS  PubMed  Google Scholar 

  • Samborski DJ (1985) Wheat leaf rust. The Cereal Rusts, pp 39–59. Roelfs AP and Bushnell WR (Eds). Academic Press, New York

  • Sawhney RN, Nayar SK, Sharma JB, Bedi R (1989) Mechanism of durable resistance: a new approach. Theoret Appl Genet 78:229–232

    CAS  Google Scholar 

  • Sawhney RN, Sharma DN (1990) Identification of sources for rust resistance and for durability to leaf rust in common wheat. SABRAO J 22:51–55

    Google Scholar 

  • Singh RP (1992) Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathol 82:835–838

    Google Scholar 

  • Singh RP (1993) Genetic association of gene Bdv1 for tolerance to Barley Yellow Dwarf Virus with genes Lr34 and Yr18 for adult plant resistance to rusts in bread wheat. Plant Dis 77:1103–1106

    Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P (2008) Will stem rust destroy the world’s wheat crop? Advances in Agron 98:271–309

    CAS  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Ann Rev Phytopathol 49:465–481

    CAS  Google Scholar 

  • Singh RP, Hong Ma, Huerta J (1994) Rust diseases of wheat, pp 19–33, In: Special Report No. 24. Guide to the CIMMYT wheat crop protection sub-program (Eds: Saari EE and Hettel GP)

  • Singh RP, Mujeeb-Kazi A, Huerta Espino J (1998) Lr46: A gene conferring slow rusting resistance to leaf rust in wheat. Phytopathol 88:890–894

    CAS  Google Scholar 

  • Skowronska R, Tomkowiak A, Nawracala J, Kwiatek MT (2020) Molecular identification of slow rusting resistance Lr46/Yr29 gene locus in selected triticale (x Triticosecale Wittmack) cultivars. J Appl Genet 61:359–366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soengas P, Velasco P, Padilla G, Ordas CME (2006) Genetic Relationships Among Brassica napus Crops Based on SSR Markers. Hort Sci 41(5):1195–1199

    CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high- density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    CAS  PubMed  Google Scholar 

  • Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust co-segregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111:731–735

    CAS  PubMed  Google Scholar 

  • Stakman EC, Steward DM, Loegering WQ (1962) Identification of physiologic races of Puccinia graminis var. tritici. USDA-ARS Bull. E-167, Washington DC, USDA eds, 1962, pp 53

  • Tomar SMS, Menon MK (2001) Genes for disease resistance in wheat. pp152. Indian Agricultural Research Institute, New Delhi

  • Tomar SMS, Singh SK, Sivasamy M, Vinod, (2014) Wheat rusts in India: Resistance breeding and gene deployment – A review. Indian J Genet 74:129–156

    CAS  Google Scholar 

  • Tomkowiak A, Skowronska R, Kwiatek M, Spychala J, Weight D, Kurasiak-Popowska D, Niemann J, Mikolajczyk S, Nawracala J, Kowalczewski P, Khan K (2021) Identification of leaf rust resistance genes Lr34 and Lr46 in common wheat (Triticum aestivum L. ssp. aestivum) lines of different origin using multiplex PCR. Open Life Sci 16:172–183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Plank JE (1963) Plant diseases: epidemics and control. Academic Press, New York, p 349

    Google Scholar 

  • William M, Singh RP, Huerta-Espino J, Ortiz Islas S, Hoisington D (2003) Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in Wheat. Phytopathol 93(2):153–159

    CAS  Google Scholar 

  • Yadav PS, Mishra VK, Arun B, Chand R, Vishwakarma MK, Vasistha NK, Mishra AN, Kalappanavar IK, Joshi AK (2015) Enhanced resistance in wheat against stem rust achieved by marker assisted backcrossing involving three independent Sr genes. Curr Plant Biolol l2:25–33

  • Yang E-N, Rosewarne GM, Herrera-Foessel SA, Huerta-Espino J, Tang Z-X, Sun C-F et al (2013) QTL analysis of the spring wheat Chapio identifies stable stripe rust resistance despite inter-continental genotype x environment interactions. Theor Appl Genet 126(7):1721–1732. https://doi.org/10.1007/s00122-013-2087-8

    Article  CAS  PubMed  Google Scholar 

  • Yu LX, Liu S, Anderson JA, Singh RP, Jin Y, Dubcovsky J, Brown-Guidera G, Bhavani S, Morgounov A, He Z, Huerta-Espino J, Sorrells ME (2010) Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines. Mol Breed 26:667–680

    Google Scholar 

  • Zhang W, Chen S, Abate Z, Nirmala J, Rouse MN, Dubcovsky J (2017) Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc Natl Acad Sci USA 114(45):E9483–E9492. https://doi.org/10.1073/pnas.1706277114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, ICAR- IARI, New Delhi for generous support for conducting this study.

Funding

Indian Council of Agriculture Research (ICAR), New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

DP conceived the research idea; SCB did the host pathogen interaction tests; SK, Harikrishna and SKVP did molecular work; NBD carryout diversity analysis; MP helped in data recording; DP and SCB wrote the manuscript.

Corresponding author

Correspondence to Dharam Pal.

Ethics declarations

Ethics approval

Not applicable.

Consent of participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest/Competing interests

The authors declare no conflict of interest.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 KB)

13313_2022_850_MOESM2_ESM.pptx

Supplementary file2 (PPTX 23218 KB) Fig.S1. Lane M-100bp ladder, 1-36:genotypes; G16, G19, G22, G36 showing amplification of Gb marker for Sr25/Lr19;Lr19 (+ check); AL (– check). Fig. S2. Lane M-100bp ladder, 1-36: genotypes; G1, G2, G3,G4, G5, G6, G8, G9, G10, G11, G12, G16, G17, G20, G21, G24, G34 showingamplification of Sr24#12 marker for Sr24/Lr24; Lr24(+check); AL (– check). Fig. S3. Lane M-100bp ladder, 1-36: genotypes; G1, G3, G4, G6, G7, G8, G9, G10, G11,G12, G16, G32, G33, G34 showing amplification of marker csLV34 for Lr34;Lr34 (+ check); AL (– check). Fig.S4. Lane M-100bp ladder,1-36: genotypes; G2, G10, G12, G15, G19, G21, G29, G30, G31 showingamplification of marker wmc44-1BL for Lr46/Yr29; Lr46(+ check); AL (– check)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, D., Kumar, S., Bhardwaj, S.C. et al. Molecular marker aided characterization of race specific and non-race specific rust resistance genes in elite wheat (Triticum spp.) germplasm. Australasian Plant Pathol. 51, 261–272 (2022). https://doi.org/10.1007/s13313-022-00850-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-022-00850-3

Keywords

Navigation