Skip to main content

Advertisement

Log in

Biological Control of the Noxious Weed Angled Onion (Allium triquetrum) Thwarted by Endophytic Bacteria in Victoria, Australia

  • Original Paper
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

The noxious weed Allium triquetrum (Alliaceae) has invaded widespread areas in southern Australia, forming dense monocultures that threaten indigenous ground flora. Two soilborne biocontrol agents, the fungus Stromatinia cepivora and the bacterium Pectobacterium carotovorum subsp. carotovorum (Pcc) have previously been reported as killing A. triquetrum in gnotobiotic controlled conditions. This study aimed to find why glasshouse pot trials in complex potting media and field trials showed no effect of inoculation with either agent. Bacteria were consistently isolated from inside surface-sterilised bases and bulbs of A. triquetrum. Most bacteria from actively growing plants were closely related to Bacillus but one from dormant bulbs (RPTAtOch1) belonged to Ochrobactrum. Most bacteria reduced soft rot caused by Pcc in vitro by up to 100% when inoculated the day before Pcc. Co-cultivation with Pcc reduced its extracellular pectin lyase and polygalacturonase, which target plant cell walls. RPTAtOch1 was identified as O. quorumnocens by traditional physiological, biochemical and molecular tests, whole genome sequencing and Average Nucleotide Identity comparisons. Its draft genome consisted of 76 contigs, 70% of which were closest to isolate A44 of O. quorumnocens, which antagonises soft rotting of potato by Pcc by destroying its quorum-sensing lactones but, like RPTAtOch1, does not inhibit growth of Pcc. Also, endophytic bacteria inhibited germination of S. cepivora sclerotia and so prevented white rot. Thus, the failure in biocontrol of A. triquetrum by both S. cepivora and Pcc may be due, ironically, to biocontrol of the intended pathogens by endophytic bacteria inside the target weed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abd-El-Khair H, Haggag Karima HE (2007) Application of some bactericides and bioagents for controlling the soft rot disease in potato. Res J Agric Biol Sci 3:463–473

    Google Scholar 

  • Agriculture Victoria (2017) Angled onion. Accessed on 23 April 2019. http://agriculture.vic.gov.au/agriculture/pests-diseases-and-weeds/weeds/a-z-of-weeds/angled-onion

  • Bean D, Dudley T (2018) A synoptic review of Tamarix biocontrol in North America: tracking success in the midst of controversy. BioControl 63:361–376

    CAS  Google Scholar 

  • Blood K (2009) Environmental weeds: a field guide for SE Australia. Bloomings Books, Melbourne

    Google Scholar 

  • Borodina E, Kelly DP, Schumann P, Rainey FA, Ward-Rainey NL, Wood AP (2002) Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobacter sulfonivorans sp. nov., Arthrobacter methylotrophus sp. nov., and Hyphomicrobium sulfonivorans sp. nov. Arch Microbiol 177:173–183

    CAS  PubMed  Google Scholar 

  • Coil D, Jospin G, Darling AE (2015) A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinform 31:587–589

    CAS  Google Scholar 

  • Coley-Smith JR, Esler G (1983) Infection of cultivars of onion, leek, garlic and Allium fistulosum by Sclerotium cepivorum. Plant Pathol 32:373–376

    Google Scholar 

  • Coley-Smith JR, Holt RW (1966) The effect of species of Allium on germination in soil of Sclerotium cepivorum Berk. Ann Appl Biol 58:273–278

    Google Scholar 

  • Coley-Smith JR, Mitchell CM, Sansford CE (1990) Long-term survival of sclerotia of Sclerotium cepivorum. Plant Pathol 32:373–376

    Google Scholar 

  • Costa SP, Angelim AL, Sousa MDVD, Melo VMM (2014) Vegetative cells of Bacillus pumilus entrapped in chitosan beads as a product for hydrocarbon biodegradation. Int Biodeter Biodegrad 87:122–127

    CAS  Google Scholar 

  • Czajkowski R, Krzyżanowska DM, Karczewska J, Atkinson S, Przysowa J, Lojkowska E, Williams P, Jafra S (2011) Inactivation of AHLs by Ochrobactrum sp. A44 depends on the activity of a novel class of AHL acylase. Environ Microbiol 3:59–68

    CAS  Google Scholar 

  • De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) (2009) Bergey’s manual of systematic bacteriology, 2nd edn. New York, Springer, Dordrecht, Heidelberg, London

    Google Scholar 

  • Dong Y-H, Gusti AR, Zhang Q, Xu J-L, Zhang L-H (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Y-H, Xu J-L, Li X-Z, Zhang L-H (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. PNAS 97:3526–3531

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791

    Google Scholar 

  • Fetzner S (2015) Quorum quenching enzymes. J Biotechnol 201:2–14

    CAS  PubMed  Google Scholar 

  • Flagan S, Ching WK, Leadbetter JR (2003) Arthrobacter strain VAI-A utilizes acyl-homoserine lactone inactivation products and stimulates quorum signal biodegradation by Variovorax paradoxa. Appl Environ Microbiol 69:909–916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garge SS, Nerurkar AS (2017) Evaluation of quorum quenching Bacillus spp. for their biocontrol traits against Pectobacterium carotovorum subs. carotovorum causing soft rot. Biocatalysis Agric Biotechnol 9:48–57

    Google Scholar 

  • Grady EN, MacDonald J, Liu L, Richman A, Yuan Z-C (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Factories 15:203. https://doi.org/10.1186/s12934-016-0603-7

    Article  Google Scholar 

  • Grandclément C, Tannières M, Monéra S, Dessaux Y, Faure D (2016) Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 40:86–116

    PubMed  Google Scholar 

  • Graumann P, ed. (2012) Bacillus: cellular and molecular biology, 2nd edn. Caister Academic Press

  • Helman Y, Chernin L (2015) Silencing the mob: disrupting quorum sensing as a means to fight plant disease. Mol Plant Pathol 16:316–329

    PubMed  Google Scholar 

  • Huber B, Scholz HC, Kämpfer P, Falsen E, Langer S, Busse H-J (2010) Ochrobactrum pituitosum sp. nov., isolated from an industrial environment. International Journal of Syst Evol Microbiol 60:321–326

    CAS  Google Scholar 

  • Imran A, Hafeez FY, Frühling A, Schumann P, Malik KA, Stackebrandt (2010) Ochrobactrum ciceri sp. nov., isolated from nodules of Cicer arietinum. Int J Syst Evol Microbiol 60: 1548–1553

  • Jafra S, Przysowa J, Czajkowski R, Michta A, Garbeva P, Van der Wolf JM (2006) Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. Can J Microbiol 52:1006–1015

    CAS  PubMed  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Google Scholar 

  • Kämpfer P, Buczolits S, Albrecht A, Busse H-J, Stackebrandt E (2003) Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov. Int J Syst Evol Microbiol 53:893–896

    PubMed  Google Scholar 

  • Kämpfer P, Huber B, Busse H-J, Scholz HC, Tomasco H, Hotzel H, Melzer F (2011) Ochrobactrum pecoris sp. nov., isolated from farm animals. Int J Syst Evol Microbiol 61:2278–2283

    PubMed  Google Scholar 

  • Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:985–1005

    Google Scholar 

  • Kämpfer P, Sessitsch A, Schloter M, Hubre B, Busse HJ, Scholz HC (2008) Ochrobactrum rhizosphaerae sp. nov. and Ochrobactrum thiophenivorans sp. nov. from the environment. Int J Syst Evol Microbiol 58:1426–1431

    PubMed  Google Scholar 

  • Kämpfer P, Steiof M, Dott W (1991) Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microbiol Ecol 21:227–251

    Google Scholar 

  • Kim S-Y, Kim J-H, Kim S-C, Lee Y-B (2014) Occurrence of tetracyclines resistant bacteria in the soil applied with livestock manure compost. Korean J Environ Agric 22:409–413

    CAS  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102:2567–2572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krzyżanowska DM, Maciag T, Ossowicki A, Rajewska M, Kaczyńskiz Z, Czerwickaz M, Rabalski L, Czaplewska P, Jafra S (2019) Ochrobactrum quorumnocens sp. nov., a quorum quenching bacterium from the potato rhizosphere, and comparative genome analysis with related type strains. PLOS ONE https://doi.org/10.1371/journal.pone.0210874

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  Google Scholar 

  • Kuykendall LD, Roy MA, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Evol Microbiol 38:358–361

    CAS  Google Scholar 

  • Lebuhn M, Achouak W, Schloter M, Berge O, Meier H, Barakat M, Hartmann A, Heulin T (2000) Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp. nov. and Ochrobactrum grignonense sp. nov. Int J Syst Evol Microbiol 50:2207–2223

    CAS  PubMed  Google Scholar 

  • Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CMJ, Schenk PM (2017) Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front Microbiol 8: article 2552

  • Lopes R, Tsui S, Gonçalves PJRO, Vieira de Queiroz M (2018) A look into a multifunctional toolbox: endophytic Bacillus species provide broad and underexploited benefits for plants. World J Microbiol Biotechnol 34: article 94 (10 pp.)

  • Ma B, Hibbing ME, Kim H-S, Reedy RM, Yedidia I, Breuer J, Breuer J, Glasner JD, Perna NT, Kelman A, Charkowski AO (2007) Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathol 97:1150–1163

    Google Scholar 

  • Mavromatis K, Lorito M, Woo SL, Bouriotis V (2003) Mode of action and antifungal properties of two cold-adapted chitinases. Extremophiles 7:385–390

    CAS  PubMed  Google Scholar 

  • McInroy JA, Kloepper JW (1994) Novel bacterial taxa inhabiting internal tissues of sweetcorn and cotton. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. CSIRO, Adelaide, pp 19–27

    Google Scholar 

  • Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, Défago G (2003) Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventative and curative biological control mechanism. FEMS Microbiol Ecol 1522:1–11

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nedjma M, Hoffmann N, Belarbi A (2001) Selective and sensitive detection of pectin lyase activity using a colorimetric test: application to the screening of microorganisms possessing pectin lyase activity. Anal Biochem 291:290–296

    CAS  PubMed  Google Scholar 

  • Ngom A, Nakagawa Y, Sawada H, Tsukahara J, Wakabayashi S, Uchiumi T, Nuntagij A, Kotepong S, Suzuki A, Higashi S, Abe M (2004) A novel symbiotic nitrogen-fixing member of the Ochrobactrum clade isolated from root nodules of Acacia mangium. J Gen Appl Microbiol 50:17–27

    CAS  PubMed  Google Scholar 

  • Nguyen TH, Minh TQ, Pham XH, Nguyen TTT, Naruto J, Hoang HL (2018) Biological control of potato tuber soft rot using N-acyl-L-homoserine lactone-degrading endophytic bacteria. Curr Sci 115:1921–1927

    Google Scholar 

  • Niu B, Paulson JN, Zheng X, Kolter R (2017) Simplified and representative bacterial community of maize roots. PNAS: E2450–E2459. Accessed on 2 May 2019. https://www.pnas.org/content/114/12/E2450

  • Park S-Y, Lee SJ, Oh T-K, Oh J-W, Koo B-T, Yum S-Y, Lee J-K (2003) AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiol 149:1541–1550

    CAS  Google Scholar 

  • Parsons WT, Cuthbertson EG (1992) Noxious weeds of Australia. Inkata Press, Melbourne, pp 85–86

    Google Scholar 

  • Pitcairn MJ, (2018) Weed biological control in California, USA: review of the past and prospects for the future. BioControl 63(3):349–359

  • Pirhonen M, Flegol D, Heikinheimo R, Palva ET (1993) A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J 12:2467–2476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad S, Manasa P, Buddhi S, Singh SM, Shivaji S (2011) Antagonistic interaction networks among bacteria from a cold soil environment. FEMS Microbiol Ecol 76:376–385

    Google Scholar 

  • Puri A, Padda KP, Chanway CP (2016) Seedling growth promotion and nitrogen fixation by a bacterial endophyte Paenibacillus polymyxa P2b-2R and its GFP derivative in corn in a long-term trial. Symbiosis 69:123–129

    CAS  Google Scholar 

  • Qian Y, Kando CK, Thorsen L, Larsen N, Jespersen L (2015) Production of autoinducer-2 by aerobic endospore-forming bacteria isolated from the west African fermented foods. FEMS Microbiol Letts 362: article UNSP-fnv186

  • Queensland Government (2016) Weeds of Australia: Queensland biosecurity edition. https://keyserver.lucidcentral.org/weeds/data/media/Html/allium_triquetrum.htm. Accessed 13 June 2019

  • Rahman MM, Ali ME, Khan AA, Akanda AM, Uddin MK, Hashim U, AbdHamid SB (2012) Isolation, characterization, and identification of biological control agent for potato soft rot in Bangladesh. Sci World J: article ID 723293 (6 pp.)

  • Raoul des Essarts YR, Cigna J, Quêtu-Laurent A, Caron A, Munier E, Beury-Cirou A, Hélias V, Faure D (2016) Biocontrol of the potato blackleg and soft rot diseases caused by Dickeya dianthicola. Appl Environ Microbiol 82:268–278

    PubMed  Google Scholar 

  • Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931

    CAS  Google Scholar 

  • Royal Botanic Gardens Victoria (2018) Allium triquetrum. Accessed 2 May 2019. https://vicflora.rbg.vic.gov.au/flora/taxon/88b31d41-7bd4-4583-ae99-56a728936720

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Schwarzländer M, Hinz HL, Winston RL, Day MD (2018) Biological control of weeds: an analysis of introductions, rates of establishment and estimates of success, worldwide. BioControl 63:319–331

    Google Scholar 

  • Someya N, Ikeda S, Morohoshi T, Noguchi M, Yoshida T, Sawada H, Ikeda T, Tsuchiya K (2011) Diversity of culturable chitinolytic bacteria from rhizospheres of agronomic plants in Japan. Microbes Environ 26:7–17

    PubMed  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tehranchian P, Adair R, Lawrie AC (2012) Bulb rot in live Allium triquetrum by Pectobacterium carotovora ssp. carotovora. 18th Australian weeds conference, Melbourne, Australia, 8-11 October, 135-141. ISBN 978-0-646-58670-0

  • Tehranchian P, Adair RJ, Lawrie AC (2014) Potential for biological control of the weed angled onion (Allium triquetrum) by the fungus Stromatinia cepivora in Australia. Australas Plant Pathol 43:381–392. https://doi.org/10.1007/s13313-014-0279-6

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 122:4673–4680

    Google Scholar 

  • Tripathi AK, Verma SC, Chowdhury SP, Lebuhn M, Gattinger A, Schloter M (2006) Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep-water rice in India. Int J Syst Evol Microbiol 56:1677–1680

    CAS  PubMed  Google Scholar 

  • Trivedi P, Spann T, Wang NA (2011) Isolation and characterization of beneficial bacteria associated with citrus roots in Florida. Microbial Ecol 62:324–336

    CAS  Google Scholar 

  • Trognitz F, Hackl E, Widhalm S, Sessitch A (2016) The role of plant-mirobiome interactions in weed establishment and control. FEMS Microbiol Ecol 92, fiw138

  • Trujillo ME, Willems A, Abril A, Planchuelo A-M, Rivas R, Ludeña D et al (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327

    CAS  PubMed  PubMed Central  Google Scholar 

  • US Food and Drug Administration (2017) BAM media M127: Potato dextrose agar. Accessed on 2 May 2019. https://www.fda.gov/food/laboratory-methods-food-safety/bam-media-m127-potato-dextrose-agar

  • Velize EA, Martinez-Hidalgo P, Hirsch AM (2017) Chtinase-producing bacteria and their role in biocontrol. AIMS Microbiol 3:689–705

    Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woo S-G, Ten LN, Park J, Lee M (2011) Ochrobactrum daejeonense sp. nov., a nitrate-reducing bacterium isolated from sludge of a leachate treatment plant. Int J Syst Evol Microbiol 61:2690–2696

    CAS  PubMed  Google Scholar 

  • Zurdo-Piñeiro JL, Rivas R, Trujillo ME, Vizcaino N, Carrasco JA, Chamber M et al (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Parks Victoria for funding part of this research on attempts to find biological control organisms for A. triquetrum, Prof. Andrew Smith for making Illumina sequencing possible for RPTAtOch1, and the Yarra Ranges Shire Council (especially Paul Smitka) for allowing the use of the Birdsland Reserve for field trials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Lawrie.

Electronic supplementary material

ESM 1

(DOCX 5115 kb)

ESM 2

(XLSX 18 kb)

ESM 3

(XLSX 12 kb)

ESM 4

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tehranchian, P., Adair, R.J., Van, T.T.H. et al. Biological Control of the Noxious Weed Angled Onion (Allium triquetrum) Thwarted by Endophytic Bacteria in Victoria, Australia. Australasian Plant Pathol. 49, 373–392 (2020). https://doi.org/10.1007/s13313-020-00710-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-020-00710-y

Keywords

Navigation