Skip to main content
Log in

Opportunities and limitations for DNA metabarcoding in Australasian plant-pathogen biosecurity

  • Review
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Protecting plants from new pathogen incursions requires effective surveillance practices. Environmental DNA (eDNA) metabarcoding shows considerable promise for detecting invasive organisms in terrestrial and aquatic ecosystems. Metabarcoding is widely used to characterise plant microbiotas and is beginning to be applied to plant biosecurity. However, diagnostic assays for biosecurity must fit within internationally agreed frameworks. Development of new gene targets to improve taxonomic resolution, improved reference databases and simplified bioinformatics platforms are required before phytopathogenic bacteria and fungi can be routinely detected by metabarcoding. Building biodiversity maps from accumulated metabarcoding data represents an important opportunity to define organism presence/absence in New Zealand and Australia and thus to enhance biosecurity decision making. Advances in sequencing technologies and infrastructure promise the creation of eDNA biosecurity surveillance networks from substrates including soil, trapped spores and insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelfattah A, Cacciola SO, Mosca S, Zappia R, Schena L (2017) Analysis of the fungal diversity in Citrus leaves with greasy spot disease symptoms. Microb Ecol 73:739–749

    Article  PubMed  CAS  Google Scholar 

  • Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-T, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:e1002352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bakker MG, Moorman TB, Kaspar TC, Manter DK (2017) Isolation of cultivation-resistant Oomycetes, first detected as amplicon sequences, from roots of herbicide-terminated winter rye. Phytobiomes 1:24–35

    Article  Google Scholar 

  • Barrero RA, Napier KR, Cunnington J, Liefting L, Keenan S, Frampton RA, Szabo T, Bulman S, Hunter A, Ward L, Whattam M, Bellgard MI (2017) An internet-based bioinformatics toolkit for plant biosecurity diagnosis and surveillance of viruses and viroids. BMC Bioinformatics 18:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barret M, Briand M, Bonneau S, Preveaux A, Valiere S, Bouchez O, Hunault G, Simoneau P, Jacquesa MA (2015) Emergence shapes the structure of the seed microbiota. Appl Environ Microbiol 81:1257–1266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bass D, Stentiford GD, Littlewood DTJ, Hartikainen H (2015) Diverse applications of environmental DNA methods in parasitology. Trends Parasitol 31:499–513

    Article  PubMed  CAS  Google Scholar 

  • Benítez-Páez A, Portune KJ, Sanz Y (2016) Species-level resolution of 16S rRNA gene amplicons sequenced through the MinION™ portable nanopore sequencer. GigaScience 5:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biosecurity 2025 (2016) Direction statement for New Zealand’s biosecurity system. Ministry for Primary Industries, Wellington

  • Bissett A, Fitzgerald A, Meintjes T, Mele PM, Reith F, Dennis PG, Breed MF, Brown B, Brown MV, Brugger J, Byrne M, Caddy-Retalic S, Carmody B, Coates DJ, Correa C, Ferrari BC, Gupta VVSR, Hamonts K, Haslem A, Hugenholtz P, Karan M, Koval J, Lowe AJ, Macdonald S, McGrath L, Martin D, Morgan M, North KI, Paungfoo-Lonhienne C, Pendall E, Phillips L, Pirzl R, Powell JR, Ragan MA, Schmidt S, Seymour N, Snape I, Stephen JR, Stevens M, Tinning M, Williams K, Yeoh YK, Zammit CM, Young A (2016) Introducing BASE: the biomes of Australian soil environments soil microbial diversity database. GigaScience 5:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bohan DA, Vacher C, Tamaddoni-Nezhad A, Raybould A, Dumbrell AJ, Woodward G (2017) Next-generation global biomonitoring: large-scale, automated reconstruction of ecological networks. Trends Ecol Evol 32:477–487

    Article  PubMed  Google Scholar 

  • Bonants P, Edema M, Robert V (2013) Q-bank, a database with information for identification of plant quarantine plant pest and diseases. EPPO Bull 43:211–215

    Article  Google Scholar 

  • Burgess TI, White D, McDougall KM, Garnas J, Dunstan WA, Català S, Carnegie AJ, Worboys S, Cahill D, Vettraino A-M (2017) Distribution and diversity of Phytophthora across Australia. Pac Conserv Biol 23:150–162

    Article  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N (2016) Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol 2:16242

    Article  PubMed  CAS  Google Scholar 

  • Català S, Pérez-Sierra A, Abad-Campos P (2015) The use of genus-specific amplicon pyrosequencing to assess Phytophthora species diversity using eDNA from soil and water in northern Spain. PLoS One 10:e0119311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Català S, Berbegal M, Pérez-Sierra A, Abad-Campos P (2017) Metabarcoding and development of new real-time specific assays reveal Phytophthora species diversity in holm oak forests in eastern Spain. Plant Pathol 66:115–123

    Article  CAS  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    Article  PubMed  CAS  Google Scholar 

  • Cookson AL, Biggs PJ, Marshall JC, Reynolds A, Collis RM, French NP, Brightwell G (2017) Culture independent analysis using gnd as a target gene to assess Escherichia coli diversity and community structure. Sci Rep 7:841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, de Hoog GS, Groenewald JZ (2009) Phylogenetic lineages in the Capnodiales. Stud Mycol 64:17–47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deiner K, Bik HM, Machler E, Seymour M, Lacoursiere-Roussel A, Altermatt F, Creer S, Bista I, Lodge DM, de Vere N, Pfrender ME, Bernatchez L (2017) Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol Ecol 26:5872–5895

    Article  PubMed  Google Scholar 

  • Denman S, Doonan J, Ransom-Jones E, Broberg M, Plummer S, Kirk S, Scarlett K, Griffiths AR, Kaczmarek M, Forster J, Peace A, Golyshin PN, Hassard F, Brown N, Kenny JG, McDonald JE (2018) Microbiome and infectivity studies reveal complex polyspecies tree disease in acute oak decline. ISME J 12:386–399

  • Deyett E, Roper MC, Ruegger P, Yang J-I, Borneman J, Rolshausen PE (2017) Microbial landscape of the grapevine Endosphere in the context of Pierce’s disease. Phytobiomes 1:138–149

    Article  Google Scholar 

  • Drummond AJ, Newcomb RD, Buckley TR, Xie D, Dopheide A, Potter BC, Heled J, Ross HA, Tooman L, Grosser S, Park D, Demetras NJ, Stevens MI, Russell JC, Anderson SH, Carter A, Nelson N (2015) Evaluating a multigene environmental DNA approach for biodiversity assessment. GigaScience 4:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elbrecht V, Leese F (2015) Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass—sequence relationships with an innovative metabarcoding protocol. PLoS One 10:e0130324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elbrecht V, Leese F (2017) PrimerMiner: an r package for development and in silico validation of DNA metabarcoding primers. Methods Ecol Evol 8:622–626

    Article  Google Scholar 

  • Ficetola GF, Pansu J, Bonin A, Coissac E, Giguet-Covex C, De Barba M, Gielly L, Lopes CM, Boyer F, Pompanon F, Rayé G, Taberlet P (2015) Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol Ecol Resour 15:543–556

    Article  PubMed  CAS  Google Scholar 

  • Fletcher LM, Zaiko A, Atalah J, Richter I, Dufour CM, Pochon X, Wood SA, Hopkins GA (2017) Bilge water as a vector for the spread of marine pests: a morphological, metabarcoding and experimental assessment. Biol Invasions 19:2851–2867

    Article  Google Scholar 

  • Gibson J, Shokralla S, Porter TM, King I, van Konynenburg S, Janzen DH, Hallwachs W, Hajibabaei M (2014) Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics. Proc Natl Acad Sci 111:8007–8012

    Article  PubMed  CAS  Google Scholar 

  • Hibbett D, Abarenkov K, Kõljalg U, Öpik M, Chai B, Cole J, Wang Q, Crous P, Robert V, Helgason T, Herr JR, Kirk P, Lueschow S, O’Donnell K, Nilsson RH, Oono R, Schoch C, Smyth C, Walker DM, Porras-Alfaro A, Taylor JW, Geiser DM (2016) Sequence-based classification and identification of Fungi. Mycologia 108:1049–1068

    PubMed  Google Scholar 

  • Holdaway R, Wood J, Dickie I, Orwin K, Bellingham P, Richardson S, Lyver P, Timoti P, Buckley T (2017) Using DNA metabarcoding to assess New Zealand’s terrestrial biodiversity. NZ J Ecol 41:251–262

    Article  Google Scholar 

  • Jakuschkin B, Fievet V, Schwaller L, Fort T, Robin C, Vacher C (2016) Deciphering the Pathobiome: intra- and Interkingdom interactions involving the pathogen Erysiphe alphitoides. Microb Ecol 72:870–880

    Article  PubMed  CAS  Google Scholar 

  • Kerkhof LJ, Dillon KP, Häggblom MM, McGuinness LR (2017) Profiling bacterial communities by MinION sequencing of ribosomal operons. Microbiome 5:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Klymus KE, Marshall NT, Stepien CA (2017) Environmental DNA (eDNA) metabarcoding assays to detect invasive invertebrate species in the Great Lakes. PLoS One 12:e0177643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kralik P, Ricchi M (2017) A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Front Microbiol 8:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawrence DP, Travadon R, Nita M, Baumgartner K (2017) TrunkDiseaseID.org: a molecular database for fast and accurate identification of fungi commonly isolated from grapevine wood. Crop Prot 102:110–117

    Article  Google Scholar 

  • Lear G, Dickie I, Banks J, Boyer S, Buckley HL, Buckley TR, Cruickshank R, Dopheide A, Handley KM, Hermans S, Kamke J, Lee CK, MacDiarmid R, Morales SE, Orlovich DA, Smissen R, Wood J, Holdaway R (2018) Methods for the extraction, storage, amplification and sequencing of DNA from environmental samples. NZ J Ecol 42:10–50A

    Google Scholar 

  • Links MG, Demeke T, Grafenhan T, Hill JE, Hemmingsen SM, Dumonceaux TJ (2014) Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds. New Phytol 202:542–553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, TGd R, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacDiarmid R, Rodoni B, Melcher U, Ochoa-Corona F, Roossinck M (2013) Biosecurity implications of new technology and discovery in plant virus research. PLoS Pathog 9:e1003337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malacrinò A, Schena L, Campolo O, Laudani F, Mosca S, Giunti G, Strano CP, Palmeri V (2017) A metabarcoding survey on the fungal microbiota associated to the olive fruit fly. Microb Ecol 73:677–684

    Article  PubMed  CAS  Google Scholar 

  • Martin FN, Abad ZG, Balci Y, Ivors K (2012) Identification and detection of Phytophthora: reviewing our progress, identifying our needs. Plant Dis 96:1080–1103

    Article  Google Scholar 

  • McNeill M, Phillips C, Young S, Shah F, Aalders L, Bell N, Gerard E, Littlejohn R (2011) Transportation of nonindigenous species via soil on international aircraft passengers’ footwear. Biol Invasions 13:2799–2815

    Article  Google Scholar 

  • Morris J, Shiller J, Mann R, Smith G, Yen A, Rodoni B (2017) Novel 'Candidatus Liberibacter' species identified in the Australian eggplant psyllid, Acizzia solanicola. Microb Biotechnol 10:833–844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morrow JL, Hall AAG, Riegler M (2017) Symbionts in waiting: the dynamics of incipient endosymbiont complementation and replacement in minimal bacterial communities of psyllids. Microbiome 5:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Mumford RA, Macarthur R, Boonham N (2016) The role and challenges of new diagnostic technology in plant biosecurity. Food Sec 8:103–109

    Article  Google Scholar 

  • Ngo CN, Braithwaite KS, Bass D, Young A, Croft BJ (2018) Phytocercomonas venanatans, a new species of Cercozoa associated with Chlorotic streak of sugarcane. Phytopathology 108:479–486

  • Nicolaisen M, West JS, Sapkota R, Canning GGM, Schoen C, Justesen AF (2017) Fungal communities including plant pathogens in near surface air are similar across northwestern Europe. Front Microbiol 8

  • Olds BP, Jerde CL, Renshaw MA, Li Y, Evans NT, Turner CR, Deiner K, Mahon AR, Brueseke MA, Shirey PD, Pfrender ME, Lodge DM, Lamberti GA (2016) Estimating species richness using environmental DNA. Ecol Evol 6:4214–4226

    Article  PubMed  PubMed Central  Google Scholar 

  • Park B, Martin F, Geiser DM, Kim HS, Mansfield MA, Nikolaeva E, Park SY, Coffey MD, Russo J, Kim SH, Balci Y, Abad G, Burgess T, Grunwald NJ, Cheong K, Choi J, Lee YH, Kang S (2013) Phytophthora database 2.0: update and future direction. Phytopathology 103:1204–1208

    Article  PubMed  Google Scholar 

  • Pawluczyk M, Weiss J, Links MG, Egaña Aranguren M, Wilkinson MD, Egea-Cortines M (2015) Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples. Anal Bioanal Chem 407:1841–1848

    Article  PubMed  CAS  Google Scholar 

  • Pochon X, Zaiko A, Fletcher LM, Laroche O, Wood SA (2017) Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications. PLoS One 12:e0187636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pollock J, Glendinning L, Wisedchanwet T, Watson M (2018) The madness of microbiome: attempting to find consensus “best practice” for 16S microbiome studies. Appl Environ Microbiol 84:e02627-02617

    Article  Google Scholar 

  • Prigigallo MI, Abdelfattah A, Cacciola SO, Faedda R, Sanzani SM, Cooke DE, Schena L (2016) Metabarcoding analysis of Phytophthora diversity using genus-specific primers and 454 pyrosequencing. Phytopathology 106:305–313

    Article  PubMed  CAS  Google Scholar 

  • Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sapkota R, Nicolaisen M (2015) An improved high throughput sequencing method for studying oomycete communities. J Microbiol Methods 110:33–39

    Article  PubMed  CAS  Google Scholar 

  • Sapp M, Lewis E, Moss S, Barrett B, Kirk S, Elphinstone J, Denman S (2016) Metabarcoding of Bacteria associated with the acute oak decline syndrome in England. Forests 7:95

    Article  Google Scholar 

  • Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant-Microbe Interact 28:212–217

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Consortium FB (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci 109:6241–6246

    Article  PubMed  Google Scholar 

  • Sinha R, Abu-Ali G, Vogtmann E, Fodor AA, Ren B, Amir A, Schwager E, Crabtree J, Ma S, The Microbiome Quality Control Project C, Abnet CC, Knight R, White O, Huttenhower C (2017) Assessment of variation in microbial community amplicon sequencing by the microbiome quality control (MBQC) project consortium. Nat Biotechnol 35:1077

    PubMed  PubMed Central  CAS  Google Scholar 

  • Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050

    Article  PubMed  CAS  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson K-H, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, L-d G, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346:1256688

    Article  PubMed  CAS  Google Scholar 

  • Thompson SM, Johnson CP, Lu AY, Frampton RA, Sullivan KL, Fiers MW, Crowhurst RN, Pitman AR, Scott IA, Wen A, Gudmestad NC, Smith GR (2015) Genomes of 'Candidatus Liberibacter solanacearum' haplotype a from New Zealand and the United States suggest significant genome plasticity in the species. Phytopathology 105:863–871

    Article  PubMed  CAS  Google Scholar 

  • Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, Prill RJ, Tripathi A, Gibbons SM, Ackermann G, Navas-Molina JA, Janssen S, Kopylova E, Vázquez-Baeza Y, González A, Morton JT, Mirarab S, Zech Xu Z, Jiang L, Haroon MF, Kanbar J, Zhu Q, Jin Song S, Kosciolek T, Bokulich NA, Lefler J, Brislawn CJ, Humphrey G, Owens SM, Hampton-Marcell J, Berg-Lyons D, McKenzie V, Fierer N, Fuhrman JA, Clauset A, Stevens RL, Shade A, Pollard KS, Goodwin KD, Jansson JK, Gilbert JA, Knight R, The Earth Microbiome Project C (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551:457–463

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:10

    Article  CAS  Google Scholar 

  • Vandeputte D, Kathagen G, D’hoe K, Vieira-Silva S, Valles-Colomer M, Sabino J, Wang J, Tito RY, De Commer L, Darzi Y, Vermeire S, Falony G, Raes J (2017) Quantitative microbiome profiling links gut community variation to microbial load. Nature 551:507

    PubMed  CAS  Google Scholar 

  • Vayssier-Taussat M, Albina E, Citti C, Cosson JF, Jacques MA, Lebrun MH, Le Loir Y, Ogliastro M, Petit MA, Roumagnac P, Candresse T (2014) Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics. Front Cell Infect Microbiol 4:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Větrovský T, Kolařík M, Žifčáková L, Zelenka T, Baldrian P (2016) The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Mol Ecol Resour 16:388–401

    Article  PubMed  CAS  Google Scholar 

  • Vettraino AM, Bonants P, Tomassini A, Bruni N, Vannini A (2012) Pyrosequencing as a tool for the detection of Phytophthora species: error rate and risk of false molecular operational taxonomic units. Lett Appl Microbiol 55:390–396

    Article  PubMed  CAS  Google Scholar 

  • Vos M, Quince C, Pijl AS, Hollander M, Kowalchuk GA (2012) A comparison of rpoB and 16S rRNA as markers in pyrosequencing studies of bacterial diversity. PLoS One 7:e30600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, Xia LC, Xu ZZ, Ursell L, Alm EJ, Birmingham A, Cram JA, Fuhrman JA, Raes J, Sun F, Zhou J, Knight R (2016) Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J 10:1669–1681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamamoto N, Bibby K, Qian J, Hospodsky D, Rismani-Yazdi H, Nazaroff WW, Peccia J (2012) Particle-size distributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air. ISME J 6:1801–1811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu DW, Ji Y, Emerson BC, Wang X, Ye C, Yang C, Ding Z (2012) Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol Evol 3:613–623

    Article  Google Scholar 

  • Zhan A, Hulák M, Sylvester F, Huang X, Adebayo AA, Abbott CL, Adamowicz SJ, Heath DD, Cristescu ME, MacIsaac HJ (2013) High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities. Methods Ecol Evol 4:558–565

    Article  Google Scholar 

Download references

Acknowledgements

This review contributes to a key aim of New Zealand’s Biological Heritage National Science Challenge (NSC). SB and GL have received direct NSC financial support. Better Border Biosecurity (B3) funding underpins ongoing collaboration with staff at the Ministry for Primary Industries. We thank Andy Pitman and an anonymous reviewer for comments that improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Bulman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulman, S.R., McDougal, R.L., Hill, K. et al. Opportunities and limitations for DNA metabarcoding in Australasian plant-pathogen biosecurity. Australasian Plant Pathol. 47, 467–474 (2018). https://doi.org/10.1007/s13313-018-0579-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-018-0579-3

Keywords

Navigation