Skip to main content
Log in

Differential occurrence of the oxidative burst and the activity of defence-related enzymes in compatible and incompatible tomato-Oidium neolycopersici interactions

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

The generation and accumulation of hydrogen peroxide (H2O2) and superoxide anion (O .-2 ), as well as guaiacol peroxidase, catalase, polyphenol oxidase, β-1,3-glucanase and chitinase activity, were studied in leaves of resistant and susceptible tomato genotypes inoculated with Oidium neolycopersici. Plants of the resistant genotype CNPH 1287 (Solanum habrochaites sin. Lycopersicon hirsutum) and susceptible genotype Santa Cruz Kada (S. lycopersicum sin. Lycopersicon esculentum), with the seven-nine and five-seven leaves completely developed, respectively, were inoculated in the second, third and fourth true leaves. Leaves were collected at the time of inoculation and at 4, 8, 12, 24, 48, 72, 96 and 120 h post inoculation (hpi). The production and accumulation of H2O2 and O .-2 were evaluated in situ using diaminobenzidine and nitroblue tetrazolium, respectively. Starting at 24–48 hpi, high accumulation of H2O2 and O .-2 was detected, and epidermal cells demonstrated a hypersensitive response, especially in the inoculated leaves of the resistant plant (S. habrochaites). An increase in guaiacol peroxidase, catalase, polyphenol oxidase, β-1,3-glucanase and chitinase activity was mainly detected by 24 hpi in the resistant plant. An association between the production of reactive oxygen species and the activity of enzymes related to reactive oxygen species metabolism (guaiacol peroxidase, catalase), hydrolytic enzymes (β-1,3-glucanase and chitinase) and phenol metabolism enzymes (polyphenol oxidase), as well as hypersensitive response, was evident during the defence responses of the resistant plants when inoculated with O. neolycopersici.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CAT:

Catalase

ROS:

Reactive oxygen species

GLU:

Glucanase

GPOX:

Guaiacol peroxidase

hpi:

Hours post-inoculation

HR:

Hypersensitive response

PPO:

Polyphenol oxidase

CHI:

Chitinase

References

  • Bai Y, Huang CC, Van der Hulst R, Meijer-Dekens F, Bonnema G, Lindhout P (2005) QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes. Mol Plant Microbe Interact 16:169–176

    Article  Google Scholar 

  • Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:299–321

    Article  PubMed  CAS  Google Scholar 

  • Balbi-Peña MI, Schwan-Estrada KRF, Stangarlin JR, Tolentino Júnior JB (2010) Development of Oidium neolycopersici on Lycopersicon genotypes. Summa Phytopathol 36:35–39

    Article  Google Scholar 

  • Bolwell GP, Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant-defence-broad perspective. Physiol Mol Plant Pathol 51:347–366

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brisson LF, Tenhaken R, Lamb C (1994) Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6:1703–1712

    PubMed  CAS  Google Scholar 

  • Ciccarese F, Amenduni M, Schiavone D, Cirulli M (1998) Occurrence and inheritance of resistance to powdery mildew (Oidium lycopersici) in Lycopersicon species. Plant Pathol 47:417–419

    Article  Google Scholar 

  • Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8:1793–1807

    PubMed  CAS  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396

    Article  PubMed  CAS  Google Scholar 

  • Duangmal K, Apenten RKO (1999) A comparative study of poliphenoloxidases from taro (Colocasia esculenta) and potato (Solanum tuberosum var. Romano). Food Chem 64:351–359

    Article  CAS  Google Scholar 

  • Gorjanovic SA (2009) Review: Biological and technological functions of barley seed pathogenesis-related proteins (PRs). J Inst Brew 115:334–360

    Article  CAS  Google Scholar 

  • Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant–pathogen interactions. Cell Microbiol 6:201–211

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defence responses. Plant Cell 8:1773–1791

    PubMed  CAS  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    Article  PubMed  CAS  Google Scholar 

  • Heiser I, Osswald WF (2008) Reactive oxygen species and their function in plant-pathogen interactions. In: Pascholati SF, Leite B, Stangarlin JR, Cia P (eds) Plant-pathogen interaction: physiology, biochemistry and molecular biology. FEALQ, Piracicaba, pp 249–284

    Google Scholar 

  • Heller J, Tudzynski P (2011) Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. Annu Rev Phytopathol 49:369–390

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Groot T, Meijer-Dekens F, Niks R, Lindhout P (1998) Hypersensitivity is the major mechanism of resistance to powdery mildew (Oidium lycopersicum) in Lycopersicon species. Eur J Plant Pathol 104:399–407

    Article  Google Scholar 

  • Huang C, Hoefs-Van De Putte PM, Haanstra-Van Der Meer JG, Meijer-Dekens F, Lindhout P (2000) Characterization and mapping of resistance to Oidium lycopersicum in two Lycopersicon hirsutum accessions: evidence for close linkage of two Ol-genes on chromosome 6 of tomato. Heredity 85:511–520

    Article  PubMed  CAS  Google Scholar 

  • Hückelhoven R, Kogel KH (1998) Tissue-specific superoxide generation at interaction sites in resistant and susceptible near isogenic barley lines attacked by powdery mildew fungus (Erysiphe graminis f. sp. hordei). Mol Plant Microbe Interact 11:292–300

    Article  Google Scholar 

  • Hückelhoven R, Fodor J, Preis C, Kogel K (1999) Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiol 119:1251–1260

    Article  PubMed  Google Scholar 

  • Hückelhoven R, Fodor J, Trujillo M, Kogel K-H (2000) Barley Mla and Rar mutants compromised in the hypersensitive cell death response against Blumeria graminis f.sp. hordei are modified in their ability to accumulate reactive oxygen intermediates at sites of fungal invasion. Planta 212:16–24

    Article  PubMed  Google Scholar 

  • Iiyama K, Lam TB-T, Stone BA (1994) Covalent cross-links in the cell wall. Plant Physiol 104:315–320

    PubMed  CAS  Google Scholar 

  • Jabs T, Tschöpe M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion fluxes and O -2 from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci 94:4800–4805

    Article  PubMed  CAS  Google Scholar 

  • Jones H, Whipps JM, Gurr SJ (2001) The tomato powdery mildew fungus Oidium neolycopersici. Mol Plant Pathol 2:303–309

    Article  PubMed  CAS  Google Scholar 

  • Joosten MHAJ, De Wit PJGM (1989) Identification of several pathogenesis-related proteins in tomato leaves inoculated with Cladosporium fulvum (syn. Fulvia fulva) as 1,3-β-glucanases and chitinases. Plant Physiol 89:945–951

    Article  PubMed  CAS  Google Scholar 

  • Kemp G, Botha A-M, Kloppers FJ, Pretorius ZA (1999) Disease development and β-1,3-glucanase expression following leaf rust infection in resistant and susceptible near-isogenic wheat seedlings. Physiol Mol Plant Pathol 55:45–52

    Article  CAS  Google Scholar 

  • Kini KR, Vasanthi NS, Shetty HS (2000) Induction of β-1,3-glucanase in seedlings of pearl millet in response to infection by Sclerospora graminicola. Eur J Plant Pathol 106:267–274

    Article  CAS  Google Scholar 

  • Koga H, Zeyen RJ, Bushnell WR, Ahlstrand GG (1988) Hypersensitive cell death, autofluorescence, and insoluble silicon accumulation in barley leaf epidermal cells under attack by Erysiphe graminis f. sp. hordei. Physiol Mol Plant Pathol 32:395–409

    Article  Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853

    Article  PubMed  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  PubMed  CAS  Google Scholar 

  • Lawrence CB, Singh NP, Qiu J, Gardner RG, Tuzin S (2000) Constitutive hydrolytic enzymes are associated with polygenic resistance of tomato to Alternaria solani and may function as an elicitor release mechanism. Physiol Mol Plant Pathol 57:211–220

    Article  CAS  Google Scholar 

  • Lever M (1972) A new reaction for colorimetric determination of carbohydrates. Anal Biochem 47:273–279

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  PubMed  CAS  Google Scholar 

  • Li L, Steffens JC (2002) Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215:239–247

    Article  PubMed  CAS  Google Scholar 

  • Li C, Bai Y, Jacobsen E, Visser R, Lindhout P, Bonnema G (2006) Tomato defense to the powdery mildew fungus: differences in expression of genes in susceptible, monogenic- and polygenic resistance responses are mainly in timing. Plant Mol Biol 62:127–140

    Article  PubMed  CAS  Google Scholar 

  • Lindhout P, Pet G, Van Der Beek JG (1994) Screening wild Lycopersicon species for resistance to powdery mildew (Oidium lycopersicum). Euphytica 72:43–49

    Article  Google Scholar 

  • Lusso MFG, Pascholati SF (1999) Activity and isoenzymatic pattern of soluble peroxidases in maize tissues after mechanical injury or fungal inoculation. Summa Phytopathol 25:244–249

    CAS  Google Scholar 

  • Mandal S, Mitra A, Mallick N (2008) Biochemical characterization of oxidative burst during interaction between Solanum lycopersicum and Fusarium oxysporum f. sp. lycopersici. Physiol Mol Plant Pathol 72:56–61

    Article  CAS  Google Scholar 

  • Mansfield J, Bennett M, Bestwick C, Woods-Tör A (1997) Phenotypic expression of gene-for-gene interaction involving fungal and bacterial pathogens: variation from recognition to response. In: Crute IR, Holub EB, Burdon JJ (eds) The gene-for-gene relationship in plant–parasite interactions. CAB International, Wallingford, pp 265–291

    Google Scholar 

  • Matsuda Y, Mori Y, Sakano Y, Nishida M, Tarumoto K, Nonomura T, Nishimura H, Kusakari S, Toyoda H (2005) Screening of wild Lycopersicon species for resistance to japanese isolate of tomato powdery mildew Oidium neolycopersici. Breed Sci 55:355–360

    Article  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combination of chitinase and β-1,3-glucanase. Plant Physiol 88:936–942

    Article  PubMed  CAS  Google Scholar 

  • Mellersh DG, Foulds IV, Higgens VJ, Heath MC (2002) H2O2 plays different roles in determining penetration failure in three diverse plant–fungal interactions. Plant J 29:257–268

    Article  PubMed  CAS  Google Scholar 

  • Mieslerová B, Lebeda A, Kennedy R (2004) Variation in Oidium neolycopersici development on host and non-host plant species and their tissue defence responses. Ann Appl Biol 144:237–248

    Article  Google Scholar 

  • Mlíčková K, Luhová L, Lebeda A, Mieslerová B, Peč P (2004) Reactive oxygen species generation and peroxidase activity during Oidium neolycopersici infection on Lycopersicon species. Plant Physiol Biochem 42:753–761

    Article  PubMed  Google Scholar 

  • Mohammadi M, Kazemi H (2002) Changes in peroxidases and polyphenol oxidases activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci 162:491–498

    Article  CAS  Google Scholar 

  • Piterková J, Petřivalský M, Luhová L, Mieslerová B, Sedlářová M, Lebeda A (2009) Local and systemic production of nitric oxide in tomato responses to powdery mildew infection. Mol Plant Path 10:501–513

    Article  Google Scholar 

  • Richard-Forget FC, Gauillard FA (1997) Oxidation of chlorogenic acid, catechins, and 4-methylcatechol in model solutions by combinations of pear (Pyrus communis cv. Williams) polyphenol oxidase and peroxidase: a possible involvement of peroxidase in enzymatic browning. J Agr Food Chem 45:2472–2476

    Article  CAS  Google Scholar 

  • Rivera ME, Codina JC, Olea F, De Vicente A, Pérez-García A (2002) Differential expression of β-1,3-glucanase in susceptible and resistant melon cultivars in response to infection by Sphaerotheca fusca. Physiol Mol Plant Pathol 61:257–265

    Article  Google Scholar 

  • Rodrigues FÁ, Jurick WM, Datnoff LE, Jones JB, Rollins JA (2005) Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions. Physiol Mol Plant Pathol 66:144–159

    Article  CAS  Google Scholar 

  • Romero D, Rivera ME, Cazorla FM, Codina JC, Fernández-Ortuño D, Torés JA, Pérez-García A, de Vicente A (2008) Comparative histochemical analyses of oxidative burst and cell wall reinforcement in compatible and incompatible melon–powdery mildew (Podosphaera fusca) interactions. J Plant Physiol 165:1895–1905

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, Rodriguez-Serrano M, Corpas FJ, Del Rio LA (2004) Cadmium- induced subcellular accumulation of O -2 and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Sedlářová M, Luhová L, Petřivalský M, Lebeda A (2007) Localisation and metabolism of reactive oxygen species during Bremia lactucae pathogenesis in Lactuca sativa and wild Lactuca spp. Plant Physiol Biochem 45:607–616

    Article  PubMed  Google Scholar 

  • Shetty NP, Jørgensen HJL, Jensen JD, Collinge DB, Shetty HS (2008) Roles of reactive oxygen species in interactions between plants and pathogens. Eur J Plant Pathol 121:267–280

    Article  CAS  Google Scholar 

  • Thipyapong P, Hunt MD, Steffens JC (2004) Antisense downregulation of polyphenol oxidases results in enhanced disease susceptibility. Planta 220:105–117

    Article  PubMed  CAS  Google Scholar 

  • Tománková K, Luhová L, Petřivalský M, Peč P, Lebeda A (2006) Biochemical aspects of reactive oxygen species formation in the interaction between Lycopersicon spp. and Oidium neolycopersici. Physiol Mol Plant Pathol 68:22–32

    Article  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 148:414–429

    Article  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    Article  PubMed  CAS  Google Scholar 

  • Tuite J (1969) Plant pathological methods: fungi and bacteria. Purdue University, Lafayette

    Google Scholar 

  • Van Kan JAL, Joosten MHAJ, Wagemakers CAM, Van Den Berg-Velthuis GCM, De Wit PJGM (1992) Differential accumulation of mRNAs encoding extracellular and intracellular PR proteins in tomato induced by virulent and avirulent races of Cladosporium fulvum. Plant Mol Biol 20:513–527

    Article  PubMed  Google Scholar 

  • Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765

    Article  Google Scholar 

  • Wang C-F, Huang L-L, Buchenauer H, Han Q-M, Zhang H-C, Kang Z-S (2007) Histochemical studies on the accumulation of reactive oxygen species (O -2 and H2O2) in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. tritici. Physiol Mol Plant Pathol 71:230–239

    Article  CAS  Google Scholar 

  • Wang C-F, Huang L-L, Zhang H-C, Han Q-M, Buchenauer H, Kang Z-S (2010) Cytochemical localization of reactive oxygen species (O -2 and H2O2) and peroxidase in the incompatible and compatible interaction of wheat - Puccinia striiformis f. sp. tritici. Physiol Mol Plant Pathol 74:221–229

    Article  CAS  Google Scholar 

  • Wirth SJ, Wolf GA (1990) Dye-labelled substrates for the assay and detection of chitinase and lysozyme activity. J Microbiol Meth 12:197–205

    Article  CAS  Google Scholar 

  • Yoshikawa M, Yamaoka N, Takeuchi Y (1993) Elicitors: their significance and primary modes of action in the induction of plant defense reactions. Plant Cell Physiol 34:1163–1173

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Conselho Nacional de Desenvolvimento Científico e Tacnológico (CNPq) for the M.I. Balbi-Peña doctoral scholarship and the productivity scholarship provided to K.R.F. Schwan-Estrada and J. R. Stangarlin. The authors also would like to thank Dr. Leonardo Boiteux from the National Center for Vegetable Crops Research (CNPH), EMBRAPA, for performing the molecular identification of the fungus and providing the seeds used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Isabel Balbi-Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balbi-Peña, M.I., Schwan-Estrada, K.R.F. & Stangarlin, J.R. Differential occurrence of the oxidative burst and the activity of defence-related enzymes in compatible and incompatible tomato-Oidium neolycopersici interactions. Australasian Plant Pathol. 41, 573–586 (2012). https://doi.org/10.1007/s13313-012-0150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-012-0150-6

Keywords

Navigation