Skip to main content
Log in

Studying genome-wide DNA polymorphisms to understand Magnaporthe-rice interactions

Keynote paper from 18th Australasian plant pathology conference 2011

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Rice blast caused by an ascomycete fungus Magnaporthe oryzae is the most devastating disease of rice worldwide. Thus understanding of the molecular mechanisms of Magnaporthe-rice interactions is crucial to devise efficient means of disease control. The availability of whole genome sequences of both M. oryzae and rice enables us to analyze their DNA polymorphisms on the genomic scale for the purpose of association genetics as well as for population genomics analysis. Studies on the association between phenotypes-DNA polymorphisms allowed us to isolate three M. oryzae AVR genes, AVR-Pia, AVR-Pii, AVR-Pik/km/kp as well as a rice R-gene, Pia. Population genomics addresses the patterns of DNA polymorphisms to identify the genomic regions under natural selection, a potentially useful tool to isolate the genes involved in plant-pathogen interactions. Recent progress in next-generation sequencing technologies predicts that these approaches would be commonly used to elucidate various host-pathogen interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allen RL, Bitter-Eddy PD, Grenville-Briggs LJ, Meitz JC, Rehmany AP, Rose LE, Beynon JL (2004) Host-parasite coevolutionary conflict between Arabidopsis and downy mildew. Science 10:1957–1960

    Article  Google Scholar 

  • Ashikawa IN, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide-binding site–leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180:2267–2276

    Article  PubMed  CAS  Google Scholar 

  • Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun MH, Tharreau D (2003) Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor Appl Genet 107:1139–1147

    Article  PubMed  CAS  Google Scholar 

  • Böhnert HU, Fudal I, Dioh W, Tharreau D, Notteghem J, Lebrun MH (2004) A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 16:499–513

    Article  Google Scholar 

  • Bryan GT, Wu K-S, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2045

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D (2010) Elements of evolutionary genetics. Roberts and Company Publishers, Greenwood Village

    Google Scholar 

  • Chauhan RS, Farman ML, Zhang H-B, Leong SA (2002) Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Mol Genet Genomics 267:603–612

    Article  PubMed  CAS  Google Scholar 

  • Costanzo S, Jia Y (2010) Sequence variation at the rice blast resistance gene Pi-km locus: implications for the development of allele specific markers. Plant Sci 178:523–530

    Article  CAS  Google Scholar 

  • Dangl JL, Jones J (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H et al (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986

    Article  PubMed  CAS  Google Scholar 

  • Dodds PN, Lawrence GJ, Catanzariti A-M, Ayliffe MA, Ellis JG (2004) The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell 16:755–768

    Article  PubMed  CAS  Google Scholar 

  • Dodds PN, Lawrence GJ, Catanzariti A-M, Teh T, Wang C-I, Ayliffe MA, Kobe B, Ellis JG (2006) Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci U S A 103:8888–8893

    Article  PubMed  CAS  Google Scholar 

  • Ellis J, Lawrence GJ, Luck JE, Dodds PN (1999) Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11:495–506

    Article  PubMed  CAS  Google Scholar 

  • Farman ML, Eto Y, Nakao T, Tosa Y, Nakayashiki H, Mayama S, Leong SA (2002) Analysis of the structure of the AVR1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea. Mol Plant-Microb Interact 15:6–16

    Article  CAS  Google Scholar 

  • Flor HH (1956) The complementary genic systems in flax and flax rust. Adv Genet 8:29–54

    Article  Google Scholar 

  • Gillespie JH (1994) The causes of molecular evolution. Oxford University Press, Oxford

    Google Scholar 

  • Gillespie JH (1998) Population genetics. A concise guide. The Johns Hopkins University Press, Maryland

    Google Scholar 

  • Hogenhout SA, van der Hoorn RAL, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant-Microb Interact 22:115–122

    Article  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jia Y, McAdams SA, Bryan GT, Hershey B, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004–4014

    Article  PubMed  CAS  Google Scholar 

  • Kamoun S (2007) Groovy times: filamentous pathogen effectors revealed. Curr Opin Plant Biol 10:358–365

    Article  PubMed  CAS  Google Scholar 

  • Kang S, Sweigard JA, Valent B (1995) The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant-Microb Interact 8:939–948

    Article  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kinoshita T (1998) Report from coordinator Linkage mapping using mutant genes in rice. In: Sano Y, Kush GS (eds) Rice genetics newsletter vol. 15. A Publication of the Rice Genetics Cooperative, Japan, pp 13–74

    Google Scholar 

  • Lazzaro BP (2008) Natural selection on the Drosophila antimicrobial immune system. Curr Opin Microbiol 11:284–289

    Article  PubMed  CAS  Google Scholar 

  • Lee SA, Wormsley S, Kamoun S, Lee AFS, Joiner K, Wong B (2003) An analysis of the Candida albicans genome database for soluble secreted proteins using computer-based prediction algorithms. Yeast 20:595–610

    Article  PubMed  CAS  Google Scholar 

  • Lee SK, Song M-Y, Seo Y-S, Kim H-K, Ko S, Cao PJ, Suh P-J, Yi G, Roh J-H, Lee S, An G, Hahn T-R, Wang G-L, Ronald P, Jeon J-S (2009) Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics 181:1627–1638

    Article  PubMed  CAS  Google Scholar 

  • Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Zhang Z, Zhao Q, Feng Q, Zhang H et al (2009) The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant-Microb Interact 22:411–420

    Article  CAS  Google Scholar 

  • Liu J, Wang X, Mitchell T, Hu Y, Liu X, Dai L, Wang G-L (2010) Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction. Mol Plant Pathol 211:419–427

    Article  Google Scholar 

  • Loutre C, Wicker T, Travella S, Galli P, Sofield S et al (2009) Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid what. Plant J 60:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Miki S, Matsui K, Kito H, Otsuka K, Ashizawa T, Yasuda N, Fukiya S, Sato J, Hirayae K, Fujita Y et al (2009) Molecular cloning and characterization of the AVR-Pia locus from a Japanese field isolate of Magnaporthe oryzae. Mol Plant Pathol 10:361–374

    Article  PubMed  CAS  Google Scholar 

  • Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T, Iwabuchi M, Narusaka Y (2009) RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens. Plant J 60:218–226

    Article  PubMed  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  PubMed  CAS  Google Scholar 

  • Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218

    Article  PubMed  CAS  Google Scholar 

  • Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru O et al (2011) A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J. doi:10.1111/j.1365-313X.2011.04502.x

    PubMed  Google Scholar 

  • Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B (2000) A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12:2019–2032

    Article  PubMed  CAS  Google Scholar 

  • Rakshit S, Rakshit A, Matsumura H, Takahashi Y, Hasegawa Y, Ito A, Ishii T, Miyashita NT, Terauchi R (2007) Large-scale DNA polymorphism study of Oryza sativa and O. rufipogon reveals the origin and divergence of Asian rice. Theor Appl Genet 114:731–743

    Article  PubMed  CAS  Google Scholar 

  • Rose LE, Bittner-Eddy PD, Langley CH, Holub EB, Michelmore RW, Benyon JL (2004) The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics 166:1517–1527

    Article  PubMed  CAS  Google Scholar 

  • Silue D, Notteghem JL, Tharreau D (1992) Evidence of a gene-for-gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem. Phytopathology 82:577–580

    Article  Google Scholar 

  • Stahl E, Dwyer G, Mauricio R, Kreitman M, Bergelson J (1999) Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 400:667–671

    Article  PubMed  CAS  Google Scholar 

  • Sweigard JA, Carroll AM, Kang S, Farrall L, Chumley FG, Valent B (1995) Identification, cloning and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 7:1221–1233

    Article  PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Terauchi R, Yoshida K (2010) Towards population genomics of effector-effector target interactions. New Phytol 187:929–939

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    Article  PubMed  CAS  Google Scholar 

  • Torto T, Li S, Styer A, Huitema E, Testa A, Gow NAR, van West P, Kamoun S (2003) EST mining and functional expression assays identify extracellular effector proteins from Phytophthora. Genome Res 13:1675–1685

    Article  PubMed  CAS  Google Scholar 

  • Van der Hoorn RAL, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017

    Article  PubMed  Google Scholar 

  • Woolhouse ME, Webster JP, Domingo E, Charlesworth B, Levin BR (2002) Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet 32:569–577

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Toas Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R (2009) Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21:1573–1591

    Article  PubMed  CAS  Google Scholar 

  • Zeigler RS, Leong SA, Teng PS (1994) Rice blast disease. CAB International Rice Research Institute, Los Banos

    Google Scholar 

  • Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang G-L (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporhte grisea. Mol Plant-Microb Interact 19:1216–1228

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RT was supported by the Ministry of Agriculture, Forestry, and Fisheries of Japan (Genomics for Agricultural Innovation PMI-0010) and the Program of Basic Research Activities for Innovative Biosciences (PROBRAIN), Japan

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryohei Terauchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terauchi, R., Yoshida, K., Saitoh, H. et al. Studying genome-wide DNA polymorphisms to understand Magnaporthe-rice interactions. Australasian Plant Pathol. 40, 328–334 (2011). https://doi.org/10.1007/s13313-011-0063-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-011-0063-9

Keywords

Navigation